Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 129731 by Adel last updated on 18/Jan/21

lim_(x→∞) cos (x/2)×cos (x/4).......cos (x/2^n )=?

limcosxx2×cosx4.......cosx2n=?

Answered by Dwaipayan Shikari last updated on 18/Jan/21

cos(x/2)=((sinx)/(2sin(x/2)))  Π_(n=1) ^∞ cos((x/2^n ))=lim_(n→∞) ((sin(x))/(2sin((x/2)))).((sin((x/2)))/(2sin((x/4)))).((sin((x/4)))/(2sin((x/8))))...((sin((x/2^(n−1) )))/(2sin((x/2^n ))))  =((sin(x))/(2^n sin((x/2^n ))))=((sinx)/(2^n .(x/2^n )))=((sinx)/x)           lim_(n→∞) sin((x/2^n ))∼(x/2^n )

cosx2=sinx2sinx2n=1cos(x2n)=limnsin(x)2sin(x2).sin(x2)2sin(x4).sin(x4)2sin(x8)...sin(x2n1)2sin(x2n)=sin(x)2nsin(x2n)=sinx2n.x2n=sinxxlimnsin(x2n)x2n

Commented by Adel last updated on 18/Jan/21

tanks bro

tanksbro

Terms of Service

Privacy Policy

Contact: info@tinkutara.com