Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 129764 by Eric002 last updated on 18/Jan/21

prove that  ∫_(−∞) ^(+∞) x^2  e^(−x^2 )  cos(x^2 )sin(x^2 ) dx  =(((√π)sin[(((√3)tan^(−1) (2))/2)])/(4 ((125))^(1/4) ))

provethat+x2ex2cos(x2)sin(x2)dx=πsin[3tan1(2)2]41254

Answered by Dwaipayan Shikari last updated on 18/Jan/21

∫_(−∞) ^∞ x^2 e^(−x^2 ) cos(x^2 )sin(x^2 )dx  =(1/(4i))∫_(−∞) ^∞ x^2 e^(−x^2 ) e^(2ix^2 ) −x^2 e^(−x^2 ) e^(−2ix^2 ) dx           x^2 (1+2i)=j  =(1/(4i))∫_(−∞) ^∞ x^2 e^(−x^2 (1−2i)) −x^2 e^(−x^2 (1+2i)) dx              x^2 (1−2i)=u  =(1/(8i(1−2i)))∫_(−∞) ^∞ ((u/(1−2i)))^(1/2) e^(−u) du−(1/(8i(1+2i)))∫_(−∞) ^∞ ((j/(1−2j)))^(1/2) e^(−j) dj  =(1/(4i(√((1−2i)^3 ))))Γ((3/2))−(1/(4i(√((1+2i)^3 ))))Γ((3/2))  =((√π)/(8i))((1−2i)^(−(3/2)) −(1+2i)^(−(3/2)) )8i  =((√π)/(8i))(5^(−(3/4)) e^(((3i)/2)tan^(−1) (2)) −5^(−(3/4)) e^(−((3i)/2)tan^(−1) (2)) )  =((√π)/(8i))(2isin((3/2)tan^(−1) (2))(1/( ((125))^(1/4) ))=((√π)/(4((125))^(1/4) ))sin((3/2)tan^(−1) (2))

x2ex2cos(x2)sin(x2)dx=14ix2ex2e2ix2x2ex2e2ix2dxx2(1+2i)=j=14ix2ex2(12i)x2ex2(1+2i)dxx2(12i)=u=18i(12i)(u12i)12eudu18i(1+2i)(j12j)12ejdj=14i(12i)3Γ(32)14i(1+2i)3Γ(32)=π8i((12i)32(1+2i)32)8i=π8i(534e3i2tan1(2)534e3i2tan1(2))=π8i(2isin(32tan1(2))11254=π41254sin(32tan1(2))

Commented by Eric002 last updated on 18/Jan/21

thank you sir

thankyousir

Answered by mathmax by abdo last updated on 18/Jan/21

A=∫_(−∞) ^(+∞)  x^2  e^(−x^2 ) cos(x^2 )sin(x^2 )dx we have  cos(x^2 )sin(x^2 )=cos(x^2 )cos((π/2)−x^2 )=(1/2){cos((π/2))+cos(2x^2 −(π/2))}  =(1/2)sin(2x^2 ) ⇒A=(1/2)∫_(−∞) ^(+∞)  x^2  e^(−x^2 )  sin(2x^2 )dx  ⇒2A=Im(∫_(−∞) ^(+∞)  x^2  e^(−x^2 +2ix^2 ) dx) but  ∫_(−∞) ^(+∞)  x^2  e^((−1+2i)x^2 ) dx  =2∫_0 ^∞  x^2  e^((−1+2i)x^2 ) dx  =_(x=(√t))     2∫_0 ^∞   t .e^((−1+2i)t) (dt/(2(√t)))  =∫_0 ^∞   t^(1/2)  .e^((−1+2i)t) dt =_((1−2i)t=z)     ∫_0 ^∞ (−(z/(−1+2i)))^(1/2)  e^(−z) ×((−dz)/(−1+2i))  =∫_0 ^∞ (z^(1/2) /( (√(1−2i))(1−2i)))e^(−z)  dz =(1/((1−2i)^(3/2) ))×Γ((3/2))  1−2i=(√5)e^(iarctan(−2))  =(√5)e^(−iarctan(2))  ⇒  (1−2i)^(3/2) =((√5))^(3/2)  e^(−i(3/2)arctan(2))  ⇒  ∫_(−∞) ^(+∞)  x^2  e^((−1+2i)x^2 ) dx =(e^((3/2)iarctan(2)) /5^(3/4) )×((√π)/2) ⇒  2A=(1/5^(3/4) ) sin((3/2)arctan(2))×((√π)/2) ⇒A=(1/(4(^4 (√(125)))))sin((3/2)arctan(2))

A=+x2ex2cos(x2)sin(x2)dxwehavecos(x2)sin(x2)=cos(x2)cos(π2x2)=12{cos(π2)+cos(2x2π2)}=12sin(2x2)A=12+x2ex2sin(2x2)dx2A=Im(+x2ex2+2ix2dx)but+x2e(1+2i)x2dx=20x2e(1+2i)x2dx=x=t20t.e(1+2i)tdt2t=0t12.e(1+2i)tdt=(12i)t=z0(z1+2i)12ez×dz1+2i=0z1212i(12i)ezdz=1(12i)32×Γ(32)12i=5eiarctan(2)=5eiarctan(2)(12i)32=(5)32ei32arctan(2)+x2e(1+2i)x2dx=e32iarctan(2)534×π22A=1534sin(32arctan(2))×π2A=14(4125)sin(32arctan(2))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com