All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 129764 by Eric002 last updated on 18/Jan/21
provethat∫−∞+∞x2e−x2cos(x2)sin(x2)dx=πsin[3tan−1(2)2]41254
Answered by Dwaipayan Shikari last updated on 18/Jan/21
∫−∞∞x2e−x2cos(x2)sin(x2)dx=14i∫−∞∞x2e−x2e2ix2−x2e−x2e−2ix2dxx2(1+2i)=j=14i∫−∞∞x2e−x2(1−2i)−x2e−x2(1+2i)dxx2(1−2i)=u=18i(1−2i)∫−∞∞(u1−2i)12e−udu−18i(1+2i)∫−∞∞(j1−2j)12e−jdj=14i(1−2i)3Γ(32)−14i(1+2i)3Γ(32)=π8i((1−2i)−32−(1+2i)−32)8i=π8i(5−34e3i2tan−1(2)−5−34e−3i2tan−1(2))=π8i(2isin(32tan−1(2))11254=π41254sin(32tan−1(2))
Commented by Eric002 last updated on 18/Jan/21
thankyousir
Answered by mathmax by abdo last updated on 18/Jan/21
A=∫−∞+∞x2e−x2cos(x2)sin(x2)dxwehavecos(x2)sin(x2)=cos(x2)cos(π2−x2)=12{cos(π2)+cos(2x2−π2)}=12sin(2x2)⇒A=12∫−∞+∞x2e−x2sin(2x2)dx⇒2A=Im(∫−∞+∞x2e−x2+2ix2dx)but∫−∞+∞x2e(−1+2i)x2dx=2∫0∞x2e(−1+2i)x2dx=x=t2∫0∞t.e(−1+2i)tdt2t=∫0∞t12.e(−1+2i)tdt=(1−2i)t=z∫0∞(−z−1+2i)12e−z×−dz−1+2i=∫0∞z121−2i(1−2i)e−zdz=1(1−2i)32×Γ(32)1−2i=5eiarctan(−2)=5e−iarctan(2)⇒(1−2i)32=(5)32e−i32arctan(2)⇒∫−∞+∞x2e(−1+2i)x2dx=e32iarctan(2)534×π2⇒2A=1534sin(32arctan(2))×π2⇒A=14(4125)sin(32arctan(2))
Terms of Service
Privacy Policy
Contact: info@tinkutara.com