Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 129795 by ajfour last updated on 19/Jan/21

Commented by ajfour last updated on 19/Jan/21

Q.129660   (Revisit)

$${Q}.\mathrm{129660}\:\:\:\left({Revisit}\right) \\ $$

Answered by ajfour last updated on 23/Jan/21

Commented by ajfour last updated on 23/Jan/21

From work-energy balance  mg((L/2))[sin 2φ_0 −sin 2φ]  =(1/2)m(v_(cm) ^2 )+(1/2)I_(cm) ω^2   ucos 2φ−v=−Rcosec^2 φ((dφ/dt))  OP =p=Rcot φ  (dp/dt)=−(Rcosec^2 φ)(dφ/dt)=u  ⇒  (dφ/dt)=−(u/R)sin^2 φ  usin 2φ=ωRcot φ  v_(cm) ^2 =v_(x,cm) ^2 +v_(y,cm) ^2    v_x =(d/dt)(Rcot φ−(L/2)cos 2φ)   v_y =(d/dt)((L/2)sin 2φ)  v_(cm) ^2 =(Lsin 2φ−Rcosec^2 φ)^2 ((dφ/dt))^2     +(Lcos 2φ)^2 ((dφ/dt))^2   ω=((usin 2φ)/(Rcot φ))=−(((cosec^2 φsin 2φ)/(cot φ)))(dφ/dt)  −−−−−−−−−−−−−−−  gL(sin 2φ_0 −sin 2φ)  =((dφ/dt))^2 [(I_(cm) /m)(((cosec^2 φsin 2φ)/(cot φ)))^2      +(Lsin 2φ−Rcosec^2 φ)^2     +(Lcos 2φ)^2 ]  ⇒  ((dφ/dt))^2 =((gL(sin 2φ_0 −sin 2φ))/((I_(cm) /m)(((cosec^2 φsin 2φ)/(cot φ)))^2 +(Lsin 2φ−Rcosec^2 φ)^2 +(Lcos 2φ)^2 ))  ω^2 =((4gL(sin 2φ_0 −sin 2φ_1 ))/(((4L^2 )/3)+R^2 cosec^4 φ−4RLcot φ))  ω^2 =((12gλ(sin α−sin θ))/(R(4λ^2 +3cosec^4 (θ/2)−12λcot (θ/2))))  say   φ=φ_1 =tan^(−1) ((R/L))  Now phase II starts:  ...............................

$${From}\:{work}-{energy}\:{balance} \\ $$$${mg}\left(\frac{{L}}{\mathrm{2}}\right)\left[\mathrm{sin}\:\mathrm{2}\phi_{\mathrm{0}} −\mathrm{sin}\:\mathrm{2}\phi\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{m}\left({v}_{{cm}} ^{\mathrm{2}} \right)+\frac{\mathrm{1}}{\mathrm{2}}{I}_{{cm}} \omega^{\mathrm{2}} \\ $$$${u}\mathrm{cos}\:\mathrm{2}\phi−{v}=−{R}\mathrm{cosec}\:^{\mathrm{2}} \phi\left(\frac{{d}\phi}{{dt}}\right) \\ $$$${OP}\:={p}={R}\mathrm{cot}\:\phi \\ $$$$\frac{{dp}}{{dt}}=−\left({R}\mathrm{cosec}\:^{\mathrm{2}} \phi\right)\frac{{d}\phi}{{dt}}={u} \\ $$$$\Rightarrow\:\:\frac{{d}\phi}{{dt}}=−\frac{{u}}{{R}}\mathrm{sin}\:^{\mathrm{2}} \phi \\ $$$${u}\mathrm{sin}\:\mathrm{2}\phi=\omega{R}\mathrm{cot}\:\phi \\ $$$${v}_{{cm}} ^{\mathrm{2}} ={v}_{{x},{cm}} ^{\mathrm{2}} +{v}_{{y},{cm}} ^{\mathrm{2}} \\ $$$$\:{v}_{{x}} =\frac{{d}}{{dt}}\left({R}\mathrm{cot}\:\phi−\frac{{L}}{\mathrm{2}}\mathrm{cos}\:\mathrm{2}\phi\right) \\ $$$$\:{v}_{{y}} =\frac{{d}}{{dt}}\left(\frac{{L}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}\phi\right) \\ $$$${v}_{{cm}} ^{\mathrm{2}} =\left({L}\mathrm{sin}\:\mathrm{2}\phi−{R}\mathrm{cosec}\:^{\mathrm{2}} \phi\right)^{\mathrm{2}} \left(\frac{{d}\phi}{{dt}}\right)^{\mathrm{2}} \\ $$$$\:\:+\left({L}\mathrm{cos}\:\mathrm{2}\phi\right)^{\mathrm{2}} \left(\frac{{d}\phi}{{dt}}\right)^{\mathrm{2}} \\ $$$$\omega=\frac{{u}\mathrm{sin}\:\mathrm{2}\phi}{{R}\mathrm{cot}\:\phi}=−\left(\frac{\mathrm{cosec}\:^{\mathrm{2}} \phi\mathrm{sin}\:\mathrm{2}\phi}{\mathrm{cot}\:\phi}\right)\frac{{d}\phi}{{dt}} \\ $$$$−−−−−−−−−−−−−−− \\ $$$${gL}\left(\mathrm{sin}\:\mathrm{2}\phi_{\mathrm{0}} −\mathrm{sin}\:\mathrm{2}\phi\right) \\ $$$$=\left(\frac{{d}\phi}{{dt}}\right)^{\mathrm{2}} \left[\frac{{I}_{{cm}} }{{m}}\left(\frac{\mathrm{cosec}\:^{\mathrm{2}} \phi\mathrm{sin}\:\mathrm{2}\phi}{\mathrm{cot}\:\phi}\right)^{\mathrm{2}} \right. \\ $$$$\:\:\:+\left({L}\mathrm{sin}\:\mathrm{2}\phi−{R}\mathrm{cosec}\:^{\mathrm{2}} \phi\right)^{\mathrm{2}} \\ $$$$\left.\:\:+\left({L}\mathrm{cos}\:\mathrm{2}\phi\right)^{\mathrm{2}} \right] \\ $$$$\Rightarrow \\ $$$$\left(\frac{{d}\phi}{{dt}}\right)^{\mathrm{2}} =\frac{{gL}\left(\mathrm{sin}\:\mathrm{2}\phi_{\mathrm{0}} −\mathrm{sin}\:\mathrm{2}\phi\right)}{\frac{{I}_{{cm}} }{{m}}\left(\frac{\mathrm{cosec}\:^{\mathrm{2}} \phi\mathrm{sin}\:\mathrm{2}\phi}{\mathrm{cot}\:\phi}\right)^{\mathrm{2}} +\left({L}\mathrm{sin}\:\mathrm{2}\phi−{R}\mathrm{cosec}\:^{\mathrm{2}} \phi\right)^{\mathrm{2}} +\left({L}\mathrm{cos}\:\mathrm{2}\phi\right)^{\mathrm{2}} } \\ $$$$\omega^{\mathrm{2}} =\frac{\mathrm{4}{gL}\left(\mathrm{sin}\:\mathrm{2}\phi_{\mathrm{0}} −\mathrm{sin}\:\mathrm{2}\phi_{\mathrm{1}} \right)}{\frac{\mathrm{4}{L}^{\mathrm{2}} }{\mathrm{3}}+{R}^{\mathrm{2}} \mathrm{cosec}\:^{\mathrm{4}} \phi−\mathrm{4}{RL}\mathrm{cot}\:\phi} \\ $$$$\omega^{\mathrm{2}} =\frac{\mathrm{12}{g}\lambda\left(\mathrm{sin}\:\alpha−\mathrm{sin}\:\theta\right)}{{R}\left(\mathrm{4}\lambda^{\mathrm{2}} +\mathrm{3cosec}\:^{\mathrm{4}} \frac{\theta}{\mathrm{2}}−\mathrm{12}\lambda\mathrm{cot}\:\frac{\theta}{\mathrm{2}}\right)} \\ $$$${say}\:\:\:\phi=\phi_{\mathrm{1}} =\mathrm{tan}^{−\mathrm{1}} \left(\frac{{R}}{{L}}\right) \\ $$$${Now}\:{phase}\:{II}\:{starts}: \\ $$$$............................... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com