Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 129807 by bramlexs22 last updated on 19/Jan/21

 8.(1+sin (π/8))(1+sin((3π)/8))(1−sin ((5π)/8))(1−sin ((7π)/8))=?

8.(1+sinπ8)(1+sin3π8)(1sin5π8)(1sin7π8)=?

Answered by EDWIN88 last updated on 19/Jan/21

 sin x = sin (π−x)   sin ((3π)/8)=sin ((5π)/8) and sin ((7π)/8)=sin (π/8)  ⇔ 8(1+sin (π/8))(1−sin (π/( 8)))(1+sin ((3π)/8))(1−sin ((3π)/8))=  ⇔ 8(1−sin^2 (π/( 8)))(1−sin^2  ((3π)/8))=  ⇔ 8(cos^2 (π/8))(cos^2  ((3π)/8))=  ⇔ 8(((1+cos (π/4))/2))(((1+cos ((3π)/4))/2)) =  ⇔ 8(((1+((√2)/2))/2))(((1−((√2)/2))/2))=2(1−(1/2))=1

sinx=sin(πx)sin3π8=sin5π8andsin7π8=sinπ88(1+sinπ8)(1sinπ8)(1+sin3π8)(1sin3π8)=8(1sin2π8)(1sin23π8)=8(cos2π8)(cos23π8)=8(1+cosπ42)(1+cos3π42)=8(1+222)(1222)=2(112)=1

Answered by Dwaipayan Shikari last updated on 19/Jan/21

sin(π/8)=sin((7π)/8)  sin((5π)/8)=sin((3π)/8)  Ψ=8(1−sin^2 (π/8))(1−sin^2 ((3π)/8))  =2(cos(π/4)−cos(π/2))^2 =1

sinπ8=sin7π8sin5π8=sin3π8Ψ=8(1sin2π8)(1sin23π8)=2(cosπ4cosπ2)2=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com