Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 129815 by stelor last updated on 19/Jan/21

Calculer les de^� rive^� es n-ie^� mes en 0 de   la fonction de^� finie par f(x)=(x^2 /(1+x^4 ))

Calculerlesderiv´ees´niemes`en0delafonctiondefinie´parf(x)=x21+x4

Answered by mathmax by abdo last updated on 19/Jan/21

first let decompose f(x)=(x^2 /(x^4  +1))    z^4  +1=0 ⇒z^4  =−1=e^(i(2k+1)π)  ⇒z_k =e^((i(2k+1)π)/4)  and k∈[[0,3]]  f(x)=(x^2 /(Π_(k=0) ^3 (x−z_k ))) =Σ_(k=0) ^3  (a_k /(x−z_k ))  a_k =(z_k ^2 /(4z_k ^3 )) =(1/(4z_k )) ⇒f(x)=(1/4)Σ_(k=0) ^3  (1/(z_k (x−z_k )))=(1/4)Σ_(k=0) ^3  (e^(−i(((2k+1)π)/4)) /(x−z_k )) ⇒  f^((n)) (x)=(1/4)Σ_(k=0) ^3  e^(−((k(2k+1)π)/4)) ×(((−1)^n n!)/((x−z_k )^(n+1) )) ⇒  f^((n)) (0) =(1/4)Σ_(k=0) ^3  e^(−((i(2k+1)π)/4))  (((−1)^n n!)/((−1)^(n+1) z_k ^(n+1) ))  =−(1/4)Σ_(k=0) ^3 ((n!)/z_k ^(n+2) ) =−((n!)/4)Σ_(k=0) ^3  (e^(−((i(2k+1)π)/4)) )^(n+2)   =−((n!)/4)Σ_(k=0) ^3  e^(−((i(2k+1)(n+2)π)/4))   =−((n!)/4){e^(−i(n+2)(π/4))  +e^(−((3i(n+2)π)/4))  +e^(−((5i(n+2)π)/4))  + e^(−((7i(n+2)π)/4)) }

firstletdecomposef(x)=x2x4+1z4+1=0z4=1=ei(2k+1)πzk=ei(2k+1)π4andk[[0,3]]f(x)=x2k=03(xzk)=k=03akxzkak=zk24zk3=14zkf(x)=14k=031zk(xzk)=14k=03ei(2k+1)π4xzkf(n)(x)=14k=03ek(2k+1)π4×(1)nn!(xzk)n+1f(n)(0)=14k=03ei(2k+1)π4(1)nn!(1)n+1zkn+1=14k=03n!zkn+2=n!4k=03(ei(2k+1)π4)n+2=n!4k=03ei(2k+1)(n+2)π4=n!4{ei(n+2)π4+e3i(n+2)π4+e5i(n+2)π4+e7i(n+2)π4}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com