Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 129832 by ajfour last updated on 19/Jan/21

Commented by ajfour last updated on 19/Jan/21

If p, q, r are roots of y=x^3 −x−c  then find p or q or r, with the  help of s.

$${If}\:{p},\:{q},\:{r}\:{are}\:{roots}\:{of}\:{y}={x}^{\mathrm{3}} −{x}−{c} \\ $$$${then}\:{find}\:{p}\:{or}\:{q}\:{or}\:{r},\:{with}\:{the} \\ $$$${help}\:{of}\:{s}. \\ $$

Commented by MJS_new last updated on 20/Jan/21

my opinion:  x^4 +ax^2 +bx+c=0  can be solved exactly if we can find exact  factors α, β, γ with  (x^2 −αx−β)(x^2 +αx−γ)=x^4 +ax^2 +bx+c  ⇔  we must find at least one useable exact  solution for  y^3 +Py+Q=0 with P=−((a^2 +12c)/3)∧Q=−((2a^3 −72ac+27b^2 )/(27))  now what you seem to want is finding s in  order to solve the following:  (X^3 −X−C)(X−s)=0  ⇔  X^4 −sX^3 −X^2 −(C−s)X+Cs=0 ⇔       [X=x+(s/4)]  ⇔ x^4 −((3s^2 +8)/8)x^2 −((s^3 −4s+8C)/8)x−((3s(s^3 −16s−64C))/(256))=0  ⇒ we must be able to find a solution of  y^3 +Py+Q=0  with  P=−((3s^2 +9Cs+1)/3)  Q=−((27Cs^3 +18s^2 +27Cs+37C^2 −2)/(27))  try with  C=(1/3)  I don′t think you can find a fitting s following  this path without solving another 3^(rd)  degree  polynome

$$\mathrm{my}\:\mathrm{opinion}: \\ $$$${x}^{\mathrm{4}} +{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{exactly}\:\mathrm{if}\:\mathrm{we}\:\mathrm{can}\:\mathrm{find}\:\mathrm{exact} \\ $$$$\mathrm{factors}\:\alpha,\:\beta,\:\gamma\:\mathrm{with} \\ $$$$\left({x}^{\mathrm{2}} −\alpha{x}−\beta\right)\left({x}^{\mathrm{2}} +\alpha{x}−\gamma\right)={x}^{\mathrm{4}} +{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$$\Leftrightarrow \\ $$$$\mathrm{we}\:\mathrm{must}\:\mathrm{find}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:{useable}\:\mathrm{exact} \\ $$$$\mathrm{solution}\:\mathrm{for} \\ $$$${y}^{\mathrm{3}} +{Py}+{Q}=\mathrm{0}\:\mathrm{with}\:{P}=−\frac{{a}^{\mathrm{2}} +\mathrm{12}{c}}{\mathrm{3}}\wedge{Q}=−\frac{\mathrm{2}{a}^{\mathrm{3}} −\mathrm{72}{ac}+\mathrm{27}{b}^{\mathrm{2}} }{\mathrm{27}} \\ $$$$\mathrm{now}\:\mathrm{what}\:\mathrm{you}\:\mathrm{seem}\:\mathrm{to}\:\mathrm{want}\:\mathrm{is}\:\mathrm{finding}\:{s}\:\mathrm{in} \\ $$$$\mathrm{order}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{following}: \\ $$$$\left({X}^{\mathrm{3}} −{X}−{C}\right)\left({X}−{s}\right)=\mathrm{0} \\ $$$$\Leftrightarrow \\ $$$${X}^{\mathrm{4}} −{sX}^{\mathrm{3}} −{X}^{\mathrm{2}} −\left({C}−{s}\right){X}+{Cs}=\mathrm{0}\:\Leftrightarrow \\ $$$$\:\:\:\:\:\left[{X}={x}+\frac{{s}}{\mathrm{4}}\right] \\ $$$$\Leftrightarrow\:{x}^{\mathrm{4}} −\frac{\mathrm{3}{s}^{\mathrm{2}} +\mathrm{8}}{\mathrm{8}}{x}^{\mathrm{2}} −\frac{{s}^{\mathrm{3}} −\mathrm{4}{s}+\mathrm{8}{C}}{\mathrm{8}}{x}−\frac{\mathrm{3}{s}\left({s}^{\mathrm{3}} −\mathrm{16}{s}−\mathrm{64}{C}\right)}{\mathrm{256}}=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{we}\:\mathrm{must}\:\mathrm{be}\:\mathrm{able}\:\mathrm{to}\:\mathrm{find}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{of} \\ $$$${y}^{\mathrm{3}} +{Py}+{Q}=\mathrm{0} \\ $$$$\mathrm{with} \\ $$$${P}=−\frac{\mathrm{3}{s}^{\mathrm{2}} +\mathrm{9}{Cs}+\mathrm{1}}{\mathrm{3}} \\ $$$${Q}=−\frac{\mathrm{27}{Cs}^{\mathrm{3}} +\mathrm{18}{s}^{\mathrm{2}} +\mathrm{27}{Cs}+\mathrm{37}{C}^{\mathrm{2}} −\mathrm{2}}{\mathrm{27}} \\ $$$$\mathrm{try}\:\mathrm{with} \\ $$$${C}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{you}\:\mathrm{can}\:\mathrm{find}\:\mathrm{a}\:\mathrm{fitting}\:{s}\:\mathrm{following} \\ $$$$\mathrm{this}\:\mathrm{path}\:{without}\:\mathrm{solving}\:\mathrm{another}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{degree} \\ $$$$\mathrm{polynome} \\ $$

Answered by ajfour last updated on 20/Jan/21

  y=x^4 −sx^3 −x^2 +(s−c)x+cs  (dy/dx)=4x^3 −3sx^2 −2x+s−c  (d^2 y/dx^2 )=12x^2 −6sx−2  let  4x^3 −3sx^2 −2x+s−c         = s−c  ⇒   4x^2 −3sx−2=0        3sx^2 −2x−4c=0  ⇒  (8c−3s)x=6cs−2  ⇒  x=((6cs−2)/(8c−3s))   4(6cs−2)^2 −3s(6cs−2)(8c−3s)    −2(8c−3s)^2 =0  ...

$$\:\:{y}={x}^{\mathrm{4}} −{sx}^{\mathrm{3}} −{x}^{\mathrm{2}} +\left({s}−{c}\right){x}+{cs} \\ $$$$\frac{{dy}}{{dx}}=\mathrm{4}{x}^{\mathrm{3}} −\mathrm{3}{sx}^{\mathrm{2}} −\mathrm{2}{x}+{s}−{c} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{12}{x}^{\mathrm{2}} −\mathrm{6}{sx}−\mathrm{2} \\ $$$${let}\:\:\mathrm{4}{x}^{\mathrm{3}} −\mathrm{3}{sx}^{\mathrm{2}} −\mathrm{2}{x}+{s}−{c} \\ $$$$\:\:\:\:\:\:\:=\:{s}−{c} \\ $$$$\Rightarrow\:\:\:\mathrm{4}{x}^{\mathrm{2}} −\mathrm{3}{sx}−\mathrm{2}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\mathrm{3}{sx}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{4}{c}=\mathrm{0} \\ $$$$\Rightarrow\:\:\left(\mathrm{8}{c}−\mathrm{3}{s}\right){x}=\mathrm{6}{cs}−\mathrm{2} \\ $$$$\Rightarrow\:\:{x}=\frac{\mathrm{6}{cs}−\mathrm{2}}{\mathrm{8}{c}−\mathrm{3}{s}} \\ $$$$\:\mathrm{4}\left(\mathrm{6}{cs}−\mathrm{2}\right)^{\mathrm{2}} −\mathrm{3}{s}\left(\mathrm{6}{cs}−\mathrm{2}\right)\left(\mathrm{8}{c}−\mathrm{3}{s}\right) \\ $$$$\:\:−\mathrm{2}\left(\mathrm{8}{c}−\mathrm{3}{s}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com