Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 129839 by liberty last updated on 20/Jan/21

Answered by EDWIN88 last updated on 20/Jan/21

J=∫_( 0) ^( π/2)  ((3(√(cos x)))/(((√(cos x)) +(√(sin x)) )^5 )) dx    let x=(π/2)−t ⇒J=∫_(π/2) ^( 0)  ((3(√(sin t)))/(((√(sin t)) +(√(cos t)))^5 ))(−dt)   or J = ∫_0 ^(π/2)  ((3(√(sin x)))/(((√(sin x)) +(√(cos x)) )^5 )) dx  we get 2J = ∫_0 ^( π/2)   ((3((√(sin x)) +(√(cos x)) ))/(((√(sin x)) +(√(cos x)) )^5 )) dx  2J = ∫_0 ^( π/2)  ((3 dx)/(((√(cos x)) (1+(√(tan x)) ))^4 ))  2J= 3∫_0 ^( π/2)  ((sec^2 x)/((1+(√(tan x)))^4 )) dx  2J = 3∫_0 ^( ∞)  (dj/((1+(√j) )^4 ))  2J=3∫_1 ^( ∞) (z^(−3) −z^(−4) )dz ; with z=1+(√j)  J=(3/2)lim_(q→∞)  [ −(z^(−2) /2)+(z^(−3) /3) ]_1 ^q = (1/2)

J=0π/23cosx(cosx+sinx)5dxletx=π2tJ=π203sint(sint+cost)5(dt)orJ=0π/23sinx(sinx+cosx)5dxweget2J=0π/23(sinx+cosx)(sinx+cosx)5dx2J=0π/23dx(cosx(1+tanx))42J=30π/2sec2x(1+tanx)4dx2J=30dj(1+j)42J=31(z3z4)dz;withz=1+jJ=32limq[z22+z33]1q=12

Answered by Lordose last updated on 20/Jan/21

1. Ω = ∫_0 ^( ∞) ((cos x)/( (√x)))dx = Re∫_0 ^( ∞) x^(−(1/2)) e^(−ix) dx =^(u=ix) Re((1/( (√i)))∫_0 ^( ∞) u^((1/2)−1) e^(−u) du)                   Ω = Re((1/( (√i)))𝚪((1/2))) = Re((√π)(((1−i)/( (√2))))) = (√(π/2))

1.Ω=0cosxxdx=Re0x12eixdx=u=ixRe(1i0u121eudu)Ω=Re(1iΓ(12))=Re(π(1i2))=π2

Answered by Lordose last updated on 20/Jan/21

2. Im∫_0 ^( ∞) x^((1/2)−1) e^(−ix) dx = (√(π/2))

2.Im0x121eixdx=π2

Answered by Olaf last updated on 20/Jan/21

I = ∫_0 ^∞ e^(−it^2 ) dt = (√(π/2)).((1−i)/2)  (Complex Fresnel integral)    J = ∫_0 ^∞ ((cosx)/( (√x)))dx = 2∫_0 ^∞ cost^2 dt (t = (√x))  J = 2∫_0 ^∞ cos(−t^2 )dt = 2Re(I) = (√(π/2))    J = ∫_0 ^∞ ((sinx)/( (√x)))dx = 2∫_0 ^∞ sint^2 dt (t = (√x))  J = −2∫_0 ^∞ sin(−t^2 )dt = −2Im(I) = (√(π/2))

I=0eit2dt=π2.1i2(ComplexFresnelintegral)J=0cosxxdx=20cost2dt(t=x)J=20cos(t2)dt=2Re(I)=π2J=0sinxxdx=20sint2dt(t=x)J=20sin(t2)dt=2Im(I)=π2

Answered by EDWIN88 last updated on 20/Jan/21

one approach to solving this would be to use  the Gaussian Integral ∫_0 ^( ∞) e^(−t^2 )  dt = ((√π)/2)  let t =y(√x) where x is constant    (2/( (√π)))∫_0 ^( ∞) e^(−xy^2 )  dy = (1/( (√x)))   I=∫_0 ^( ∞) cos x (2/( (√π))) ∫_0 ^( ∞) e^(−xy^2 )  dydx    = (2/( (√π))) ∫_0 ^∞ ∫_0 ^( ∞) e^(−xy^2 ) cos x dx dy    = (2/( (√π))) ∫_0 ^( ∞)  L(cos t)∣_(s=y^2 )  dy    = (2/( (√π))) ∫_0 ^( ∞) (y^2 /(y^4 +1)) dy   similarly to J=∫_0 ^( ∞) ((sin x)/( (√x))) dx = (2/( (√π))) ∫_0 ^( ∞)  (dy/(y^4 +1))  I=J ⇒2I=(2/( (√π))) ∫_0 ^( ∞)  ((y^2 +1)/(y^4 +1)) dy  2I= (2/( (√π))) ∫_(−∞) ^( ∞)  (1/(u^2 +2)) du [ with u = y−(1/y) ]  2I=(2/( (√π))).(1/( (√2))) (arctan ((u/( (√2)))) )∣_(−∞) ^∞   I= (√(π/2)) → { ((∫_0 ^∞  ((cos x)/( (√x))) dx = (√(π/2)))),((∫_0 ^( ∞)  ((sin x)/( (√x))) dx = (√(π/2)))) :}

oneapproachtosolvingthiswouldbetousetheGaussianIntegral0et2dt=π2lett=yxwherexisconstant2π0exy2dy=1xI=0cosx2π0exy2dydx=2π00exy2cosxdxdy=2π0L(cost)s=y2dy=2π0y2y4+1dysimilarlytoJ=0sinxxdx=2π0dyy4+1I=J2I=2π0y2+1y4+1dy2I=2π1u2+2du[withu=y1y]2I=2π.12(arctan(u2))I=π2{0cosxxdx=π20sinxxdx=π2

Answered by Bird last updated on 20/Jan/21

1 an2 )let I=∫_0 ^∞  ((cosx)/( (√x)))dx and  J=∫_0 ^∞ ((sinx)/( (√x)))dx ⇒I−iJ=∫_0 ^∞ (e^(−ix) /( (√x)))dx  =_((√x)=t)    ∫_0 ^∞  (e^(−it^2 ) /t)(2t)dt  =2∫_0 ^∞  e^(−it^2 ) dt =2∫_0 ^∞  e^(−((√i)t)^2 ) dt  =_((√i)t=z)    2∫_0 ^∞  e^(−z^2 ) (dz/( (√i)))  =(2/e^((iπ)/4) )∫_0 ^∞  e^(−z^2 ) dz =2e^(−i(π/4)) ×((√π)/2)  =(√π){cos((π/4))−isin((π/4))}  (√π)×((√2)/2)−i(√π).((√2)/2) ⇒I=((√(2π))/2)  and J=((√(2π))/2)

1an2)letI=0cosxxdxandJ=0sinxxdxIiJ=0eixxdx=x=t0eit2t(2t)dt=20eit2dt=20e(it)2dt=it=z20ez2dzi=2eiπ40ez2dz=2eiπ4×π2=π{cos(π4)isin(π4)}π×22iπ.22I=2π2andJ=2π2

Answered by bemath last updated on 21/Jan/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com