Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 129938 by stelor last updated on 21/Jan/21

please help               ∫(1/(x^2 (x^2 −2)^2 ))dx=?

pleasehelp1x2(x22)2dx=?

Answered by Ar Brandon last updated on 21/Jan/21

I=∫(dx/(x^2 (2−x^2 )^2 ))=(1/2)∫(((2−x^2 )+x^2 )/(x^2 (2−x^2 )^2 ))dx=(1/2)∫{(1/(x^2 (2−x^2 )))+(1/((2−x^2 )^2 ))}dx     =(1/4)∫(((2−x^2 )+x^2 )/(x^2 (2−x^2 )))dx+(1/2)∫(dx/((2−x^2 )^2 ))     =(1/4)∫{(1/x^2 )+(1/(2−x^2 ))}+(1/2)∫(dx/((2−x^2 )^2 ))  f(a)=∫(dx/(a^2 −x^2 ))=(1/a)arctanh((x/a))  f ′(a)=−∫((2a)/((a^2 −x^2 )^2 ))dx=(1/a)∙(−(x/a^2 )∙(1/(1−(x^2 /a^2 ))))−(1/a^2 )arctanh((x/a))  ⇒∫(dx/((2−x^2 )^2 ))=−(1/(2(√2)))f ′((√2))  I=(1/4){−(1/x)+(1/( (√2)))tanh^(−1) ((x/( (√2))))}−(1/(4(√2))){(1/( (√2)))∙(x/(x^2 −2))−(1/2)tanh^(−1) ((x/( (√2))))}     =(3/(8(√2)))tanh^(−1) ((x/( (√2))))−(1/8)∙(x/(x^2 −2))−(1/(4x))+C

I=dxx2(2x2)2=12(2x2)+x2x2(2x2)2dx=12{1x2(2x2)+1(2x2)2}dx=14(2x2)+x2x2(2x2)dx+12dx(2x2)2=14{1x2+12x2}+12dx(2x2)2f(a)=dxa2x2=1aarctanh(xa)f(a)=2a(a2x2)2dx=1a(xa211x2a2)1a2arctanh(xa)dx(2x2)2=122f(2)I=14{1x+12tanh1(x2)}142{12xx2212tanh1(x2)}=382tanh1(x2)18xx2214x+C

Commented by stelor last updated on 21/Jan/21

merci−−

merci

Answered by Ar Brandon last updated on 21/Jan/21

I=∫(dx/(x^2 (x^2 −2)^2 )) , x=(√2)sinθ     =∫(((√2)cosθdθ)/(2sin^2 θ∙4(sin^2 θ−1)^2 ))=((√2)/8)∫(dθ/(sin^2 θcos^3 θ))     =((√2)/( 8))∫{(1/(sin^2 θcosθ))+(1/(cos^3 θ))}dθ=((√2)/8)∫{((cosθ)/(sin^2 θ))+(1/(cosθ))+(1/(cos^3 θ))}dθ     =((√2)/8){−(1/(sinθ))+ln∣tan((θ/2)+(π/4))∣}+((√2)/( 8))∫(dθ/(cos^3 θ))  ∫(dθ/(cos^3 θ))=∫((cosθ)/(cos^4 θ))dθ=∫((cosθ)/((1−sin^2 θ)^2 ))dθ                 =∫(du/((1−u^2 )^2 ))=∫(du/(u^4 −2u^2 +1))=(1/2)∫{(((u^2 +1)−(u^2 −1))/(u^4 −2u^2 +1))}du                 =(1/2)∫{((1+(1/u^2 ))/((u−(1/u))^2 ))−((1−(1/u^2 ))/((u+(1/u))^2 −4))}du                  =(1/2){∫(dp/p^2 )−∫(dq/(q^2 −4))}=(1/2){−(1/p)+(1/4)ln∣((q+2)/(q−2))∣}+C

I=dxx2(x22)2,x=2sinθ=2cosθdθ2sin2θ4(sin2θ1)2=28dθsin2θcos3θ=28{1sin2θcosθ+1cos3θ}dθ=28{cosθsin2θ+1cosθ+1cos3θ}dθ=28{1sinθ+lntan(θ2+π4)}+28dθcos3θdθcos3θ=cosθcos4θdθ=cosθ(1sin2θ)2dθ=du(1u2)2=duu42u2+1=12{(u2+1)(u21)u42u2+1}du=12{1+1u2(u1u)211u2(u+1u)24}du=12{dpp2dqq24}=12{1p+14lnq+2q2}+C

Commented by liberty last updated on 21/Jan/21

x=(√2) sin θ ⇒dx=(√2) cos θ dθ

x=2sinθdx=2cosθdθ

Commented by Ar Brandon last updated on 21/Jan/21

Yeah, you're right. Thanks for remark.

Answered by MJS_new last updated on 21/Jan/21

∫(dx/(x^2 (x^2 −2)^2 ))=       [Ostrogradski′s Method]  =−((3x^2 −4)/(8x(x^2 −2)))−(3/8)∫(dx/(x^2 −2))=  =−((3x^2 −4)/(8x(x^2 −2)))−((3(√2))/(32))∫(1/(x+(√2)))−(1/(x−(√2)))dx=  =−((3x^2 −4)/(8x(x^2 −2)))−((3(√2))/(32))(ln ∣x+(√2)∣ −ln ∣x−(√2)∣)=  =−((3x^2 −4)/(8x(x^2 −2)))−((3(√2))/(32))ln ∣((x+(√2))/(x−(√2)))∣ +C

dxx2(x22)2=[OstrogradskisMethod]=3x248x(x22)38dxx22==3x248x(x22)32321x+21x2dx==3x248x(x22)3232(lnx+2lnx2)==3x248x(x22)3232lnx+2x2+C

Answered by mathmax by abdo last updated on 21/Jan/21

I =∫  (dx/(x^2 (x^2 −2)^2 )) ⇒I =∫ (dx/(x^2 (x−(√2))^2 (x+(√2))^2 ))  =∫  (dx/(x^2 (((x−(√2))/(x+(√2))))^2 (x+(√2))^4 )) we do the changement ((x−(√2))/(x+(√2)))=t ⇒  x−(√2)=tx+(√2)t ⇒(1−t)x=(√2)+(√2)t ⇒x=(((√2)t+(√2))/(1−t)) ⇒  (dx/dt)=(((√2)(1−t)+(√2)t+(√2))/((1−t)^2 ))=((2(√2))/((1−t)^2 ))  and x+(√2)=(((√2)t+(√2))/(1−t))+(√2)  =(((√2)t+(√2)+(√2)−(√2)t)/(1−t))=((2(√2))/(1−t)) ⇒  I =∫   ((2(√2))/((1−t)^2 ((((√2)t+(√2))/(1−t)))^2 (((2(√2))/(1−t)))^4 ))dt  =(1/((2(√2))^2 ×2)) ∫   (((1−t)^6 )/((1−t)^2 (t+1)^2 ))dt  =(1/(16)) ∫  (((t−1)^4 )/((t+1)^2 ))dt =_(t+1=z)   (1/(16))∫ (((z−2)^4 )/z^2 )dz  =(1/(16))∫  ((Σ_(k=0) ^4  C_4 ^k  z^k (−2)^(4−k) )/z^2 )dz  =(1/(16)) ∫  (−2)^4  Σ_(k=0) ^4 (−2)^k C_4 ^k  z^(k−2)  dz  =Σ_(k=0 and k≠1) ^4 (−2)^k  C_4 ^k (1/(k−1))z^(k−1)   −2ln∣z∣ +c      =Σ_(k=0) ^4   (((−2)^k  C_4 ^k )/(k−1))(t+1)^(k−1)  −2ln∣t+1∣+C  =Σ_(k=0) ^4  (((−2)^k  C_4 ^k )/(k−1))(((x−(√2))/(x+(√2)))+1)^(k−1)  −2ln∣((x−(√2))/(3+(√2)))+1∣ +C

I=dxx2(x22)2I=dxx2(x2)2(x+2)2=dxx2(x2x+2)2(x+2)4wedothechangementx2x+2=tx2=tx+2t(1t)x=2+2tx=2t+21tdxdt=2(1t)+2t+2(1t)2=22(1t)2andx+2=2t+21t+2=2t+2+22t1t=221tI=22(1t)2(2t+21t)2(221t)4dt=1(22)2×2(1t)6(1t)2(t+1)2dt=116(t1)4(t+1)2dt=t+1=z116(z2)4z2dz=116k=04C4kzk(2)4kz2dz=116(2)4k=04(2)kC4kzk2dz=k=0andk14(2)kC4k1k1zk12lnz+c=k=04(2)kC4kk1(t+1)k12lnt+1+C=k=04(2)kC4kk1(x2x+2+1)k12lnx23+2+1+C

Commented by mathmax by abdo last updated on 21/Jan/21

k≠1

k1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com