Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 129988 by mnjuly1970 last updated on 21/Jan/21

                ... nice  calculus ...    evaluate:      φ = ∫_0 ^( 1) (dx/((x−x^3 )^(1/2) )) =?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{nice}\:\:{calculus}\:... \\ $$$$\:\:{evaluate}:\: \\ $$$$\:\:\:\phi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{dx}}{\left({x}−{x}^{\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} }\:=? \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 21/Jan/21

∫_0 ^1 (1/( (√x).(√(1+x^2 ))))            x^2 =u⇒1=(1/(2x)).(du/dx)  =(1/2)∫_0 ^1 u^(−(3/4)) (1+u)^(−(1/2)) (1−u)^0 du    _2 F_1 (a,b;c;−1)=((Γ(c))/(Γ(c−b)Γ(b)))∫_0 ^1 t^(b−1) (1−t)^(c−b−1) (1+t)^(−a) dt  c−b=1    (Here)  a=(1/2)    b=(1/4)      c=(5/4)  So  the integral is   4 _2 F_1 ((1/2),(1/4);(5/4),−1)

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{{x}}.\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} ={u}\Rightarrow\mathrm{1}=\frac{\mathrm{1}}{\mathrm{2}{x}}.\frac{{du}}{{dx}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {u}^{−\frac{\mathrm{3}}{\mathrm{4}}} \left(\mathrm{1}+{u}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}−{u}\right)^{\mathrm{0}} {du} \\ $$$$\:\:_{\mathrm{2}} {F}_{\mathrm{1}} \left({a},{b};{c};−\mathrm{1}\right)=\frac{\Gamma\left({c}\right)}{\Gamma\left({c}−{b}\right)\Gamma\left({b}\right)}\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{b}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{c}−{b}−\mathrm{1}} \left(\mathrm{1}+{t}\right)^{−{a}} {dt} \\ $$$${c}−{b}=\mathrm{1}\:\:\:\:\left({Here}\right) \\ $$$${a}=\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:{b}=\frac{\mathrm{1}}{\mathrm{4}}\:\:\:\:\:\:{c}=\frac{\mathrm{5}}{\mathrm{4}} \\ $$$${So}\:\:{the}\:{integral}\:{is}\: \\ $$$$\mathrm{4}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{4}};\frac{\mathrm{5}}{\mathrm{4}},−\mathrm{1}\right) \\ $$

Answered by Dwaipayan Shikari last updated on 21/Jan/21

∫_0 ^1 (1/((x−x^3 )^(1/2) ))dx=(1/2)∫_0 ^1 u^(−(3/4)) (1−u)^(−(1/2)) du=((Γ((1/4))Γ((1/2)))/(2Γ((3/4))))  =((√(π^3 /2))/(Γ^2 ((3/4))))

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\left({x}−{x}^{\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} }{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {u}^{−\frac{\mathrm{3}}{\mathrm{4}}} \left(\mathrm{1}−{u}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {du}=\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)} \\ $$$$=\frac{\sqrt{\frac{\pi^{\mathrm{3}} }{\mathrm{2}}}}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)} \\ $$

Commented by mnjuly1970 last updated on 22/Jan/21

thanks alot...

$${thanks}\:{alot}... \\ $$

Answered by mathmax by abdo last updated on 21/Jan/21

Φ=∫_0 ^1  (dx/((x−x^3 )^(1/2) )) ⇒Φ =∫_0 ^1  (dx/( (√x)(1−x^2 )^(1/2) ))dx =_((√x)=t)   ∫_0 ^1  ((2tdt)/(t(1−t^4 )^(1/2) ))  =2∫_0 ^1  (dt/((1−t^4 )^(1/2) )) =_(t=u^(1/4) )    2×(1/4)∫_0 ^1  (1−u)^(−(1/2))  u^((1/4)−1)  du  =(1/2)∫_0 ^1  u^((1/4)−1) (1−u)^((1/2)−1)  du=(1/2)B((1/4),(1/2))  =(1/2)((Γ((1/4)).Γ((1/2)))/(Γ((1/4)+(1/2))))=((√π)/2)((Γ((1/4)))/(Γ((3/4))))

$$\Phi=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\left(\mathrm{x}−\mathrm{x}^{\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} }\:\Rightarrow\Phi\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{x}}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} }\mathrm{dx}\:=_{\sqrt{\mathrm{x}}=\mathrm{t}} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{2tdt}}{\mathrm{t}\left(\mathrm{1}−\mathrm{t}^{\mathrm{4}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} } \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dt}}{\left(\mathrm{1}−\mathrm{t}^{\mathrm{4}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} }\:=_{\mathrm{t}=\mathrm{u}^{\frac{\mathrm{1}}{\mathrm{4}}} } \:\:\:\mathrm{2}×\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{1}−\mathrm{u}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{u}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} \:\mathrm{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{u}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} \left(\mathrm{1}−\mathrm{u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} \:\mathrm{du}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{B}\left(\frac{\mathrm{1}}{\mathrm{4}},\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right).\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}\right)}=\frac{\sqrt{\pi}}{\mathrm{2}}\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 22/Jan/21

grateful sir max ...

$${grateful}\:{sir}\:{max}\:... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com