All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 130047 by liberty last updated on 22/Jan/21
Given4cos2xsinx−2sin2x=3sinxwhere−π2⩽x⩽π2.Findthesumofallposibblevalueofx.
Answered by MJS_new last updated on 22/Jan/21
sinx=s⇒cos2x=1−s2(s2+s2−14)s=0⇒s=0∨s=−14±54⇒x=0∨x=−3π10∨x=π10⇒answeris−π5
Answered by Alepro3 last updated on 22/Jan/21
cos2x=1−sin2x⇒4sinx−4sin3x−2sin2x=3sinx⇒sinx(4sin2x+2sinx−sinx)=0⇒onesolutionissinx=0⇒x=kπsolvingthe2nddegreeequationwehavesinx1,2=(−2±4+16)/8=(−1±5)/4sox1,2=sin−1[(−1±5)/4]+2kπandx3,4=π−sin−1[[(1−5)/4]+2kπ⇒thesumofallofthisvalueofxisΣx=π+5kπ
Terms of Service
Privacy Policy
Contact: info@tinkutara.com