Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 130077 by benjo_mathlover last updated on 22/Jan/21

 If x^2 +y^2 =4 , find minimum and maximum  value of (x/(y+3)).

Ifx2+y2=4,findminimumandmaximumvalueofxy+3.

Answered by liberty last updated on 22/Jan/21

Answered by benjo_mathlover last updated on 22/Jan/21

 let (x/(y+3)) = (1/m); m≠0 ⇒y+3 = mx   or y = mx−3 substitution to circle give    x^2 +(mx−3)^2 −4=0 ; (1+m^2 )x^2 −6mx+5=0  put discriminant = 0 ; 36m^2 −4(1+m^2 )(5)=0   36m^2 −20m^2 −20=0 ; m^2  = ((20)/(16))   m = ± ((√5)/2) so we get (x/(y+3)) = ± (2/( (√5)))=±((2(√5))/5)   → { ((max = ((2(√5))/5))),((min = −((2(√5))/5))) :}

letxy+3=1m;m0y+3=mxory=mx3substitutiontocirclegivex2+(mx3)24=0;(1+m2)x26mx+5=0putdiscriminant=0;36m24(1+m2)(5)=036m220m220=0;m2=2016m=±52sowegetxy+3=±25=±255{max=255min=255

Terms of Service

Privacy Policy

Contact: info@tinkutara.com