Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 130088 by stelor last updated on 22/Jan/21

hello please.    ∫(dx/(a^2 cos^2 x + b^2 sin^2 x))

helloplease.dxa2cos2x+b2sin2x

Answered by bobhans last updated on 22/Jan/21

I=∫ ((dx/(cos^2 x))/(a^2 +b^2 tan^2 x)) = ∫ ((sec^2 x dx)/(a^2 +b^2  tan^2 x))   let tan x = u ⇒du = sec^2 x dx  I=∫ (du/(a^2 +b^2 u^2 ))  ; let bu = a tan θ  I=∫ (((a/b)sec^2 θ dθ)/(a^2 sec^2 θ)) = (1/(ab)) θ + c  I=(1/(ab)) tan^(−1) (((bu)/a))+c = (1/(ab))tan^(−1) (((b tan x)/a))+c

I=dxcos2xa2+b2tan2x=sec2xdxa2+b2tan2xlettanx=udu=sec2xdxI=dua2+b2u2;letbu=atanθI=absec2θdθa2sec2θ=1abθ+cI=1abtan1(bua)+c=1abtan1(btanxa)+c

Commented by stelor last updated on 22/Jan/21

thank...

thank...

Answered by mathmax by abdo last updated on 22/Jan/21

I =∫  (dx/(a^2 (cos^2 x+(b^2 /a^2 )sin^2 x))) let α =(b^2 /a^2 )  (ab≠0and a≠b)) ⇒I=(1/a^2 )∫(dx/(cos^2 x+α^2  cos^2 x))  =(1/a^2 )∫  (dx/(((1+cos(2x))/2)+α^2 ×((1−cos(2x))/2))) =(2/a^2 )∫ (dx/(1+cos(2x)+α^2 −α^2 cos(2x)))  =(2/a^2 )∫ (dx/(1+α^2  +(1−α^2  )cos(2x))) =_(2x=t)    (1/a^2 )∫ (dt/((1+α^2  +(1−α^2 )cost)))  =_(tan((t/2))=z)     (1/a^2 )∫  ((2dz)/((1+z^2 ){1+α^2  +(1−α^2 )((1−z^2 )/(1+z^2 ))}))  =(2/a^2 )∫   (dz/((1+α^2 )(1+z^2 )+(1−α^2 )(1−z^2 )))  =(2/a^2 )∫ (dz/(1+α^2  +(1+α^2 )z^2  +1−α^2 −(1−α^2 )z^2 ))  =(2/a^2 )∫ (dz/(2+(2α^2 )z^2 )) =(1/a^2 )∫  (dz/(1+α^2 z^2 )) =(1/(αa^2 )) arctan(αz) +c  =(1/(αa^2 ))arctan(αtan((t/2)))+C  =(a^2 /(b^2 a^2 ))arctan((b^2 /a^2 )tan(x))+C  =(1/b^2 )arctan((b^2 /a^2 )tan(x)) +C

I=dxa2(cos2x+b2a2sin2x)letα=b2a2(ab0andab))I=1a2dxcos2x+α2cos2x=1a2dx1+cos(2x)2+α2×1cos(2x)2=2a2dx1+cos(2x)+α2α2cos(2x)=2a2dx1+α2+(1α2)cos(2x)=2x=t1a2dt(1+α2+(1α2)cost)=tan(t2)=z1a22dz(1+z2){1+α2+(1α2)1z21+z2}=2a2dz(1+α2)(1+z2)+(1α2)(1z2)=2a2dz1+α2+(1+α2)z2+1α2(1α2)z2=2a2dz2+(2α2)z2=1a2dz1+α2z2=1αa2arctan(αz)+c=1αa2arctan(αtan(t2))+C=a2b2a2arctan(b2a2tan(x))+C=1b2arctan(b2a2tan(x))+C

Commented by mathmax by abdo last updated on 22/Jan/21

sorry α=(b/a) ⇒I =(a/(ba^2 )) arctan((b/a)tan(x)) +C  =(1/(ab))arctan((b/a)tanx)+C

sorryα=baI=aba2arctan(batan(x))+C=1abarctan(batanx)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com