All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 130089 by ajfour last updated on 22/Jan/21
Tosolvex3=x+cLety=(x−p)(x3−x−c)dydx=(x3−x−c)+(3x2−1)(x−p)letdydx=mx⇒(3x2−1)(x−p)=mx3x3−3px2−(m+1)x+p=03(x+c)−3px2−(m+1)x+p=03px2+(m−2)x−(3c+p)=0andsincex3=x+c(m−2)x2+(2p−3c)x+3cp=0[9cp2+(3c+p)(m−2)]x+[3cp(m−2)+(3c+p)(2p−3c)]=0x=−(3c+p)(2p−3c)+3cp(m−2)9cp2+(3c+p)(m−2)(m−2)x2+(2p−3c)x+(3cp)=0Nowchoosingsuitable′p′valuewefind′m′;andthenx=f(p,m)★
Commented by bobhans last updated on 22/Jan/21
example:x3=x+6y=(x−p)(x3−x−6)dydx=x3−x+6+(x−p)(3x2−1)dydx=4x3−4px2−2x+p+6dydx=4x+24−4px2−2x+p+6=2x−4px2+30+pletdydx=mx⇒4px2+(m−2)x−(p+30)=0x=2−m±(m−2)2+16p(p+30)8pnow{p=?m=?
Commented by ajfour last updated on 23/Jan/21
Answered by ajfour last updated on 23/Jan/21
x=−(3c+p)(2p−3c)+3cp(m−2)9cp2+(3c+p)(m−2)(m−2)x2+(2p−3c)x+(3cp)=0saym−2=Mx=−3cpM+(3c+p)(2p−3c)(3c+p)M+9cp2letMp=s,1p=qx=−3cs+(3cq+1)(2−3cq)(3cq+1)s+9cs[3cs+(3cq+1)(2−3cq)]2−(2−3cq)[3cs+(3cq+1)(2−3cq)][(3cq+1)s+9c]+3c[(3cq+1)s+9c]2=09c2s3+6c(3cq+1)(2−3cq)s2+(3cq+1)2(2−3cq)2s−−6c(3cq+1)s2−54c2s+9c2q(3cq+1)s2+81c3qs−(3cq+1)2(2−3cq)2s−−9c(3cq+1)(2−3cq)2+3c(3cq+1)2s2+54c(3cq+1)s+243c3=0⇒(9c2)s3+[6c(3cq+1)(2−3cq)−6c(3cq+1)+9c2q(3cq+1)+3c(3cq+1)2]s2+[54c2+81c3q+54c(3cq+1)]s+[−9c(3cq+1)(2−3cq)2+243c3]=0letq=0⇒s3+1cs2+6(1c+1)s−(4c−27c)=0s=−2.54409,−0.95044forc=301919x=−3cs+(3cq+1)(2−3cq)(3cq+1)s+9candforq=0x=−3cs+2s+9c=rightanswerisx=1.14708
Terms of Service
Privacy Policy
Contact: info@tinkutara.com