Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 130103 by mohammad17 last updated on 22/Jan/21

by using demover theorem prove that    sin2θ=2sinθcosθ

byusingdemovertheoremprovethatsin2θ=2sinθcosθ

Answered by Olaf last updated on 22/Jan/21

(cosθ+isinθ)^n  = cos(nθ)+isin(nθ)  For n = 2 :  (cosθ+isinθ)^2  = cos(2θ)+isin(2θ)  cos^2 θ−sin^2 θ+2isinθcosθ = cos(2θ)+isin(2θ)  ⇒ { ((cos^2 θ−sin^2 θ = cos(2θ))),((2sinθcosθ = sin(2θ))) :}

(cosθ+isinθ)n=cos(nθ)+isin(nθ)Forn=2:(cosθ+isinθ)2=cos(2θ)+isin(2θ)cos2θsin2θ+2isinθcosθ=cos(2θ)+isin(2θ){cos2θsin2θ=cos(2θ)2sinθcosθ=sin(2θ)

Commented by mohammad17 last updated on 23/Jan/21

very nice thank you sir

verynicethankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com