Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 130109 by Adel last updated on 22/Jan/21

2+(3/2^3 )+(4/3^3 )+(5/4^3 )+(6/5^3 )+∙∙∙∙∙∙∙∙∙=?

2+323+433+543+653+=?

Answered by Olaf last updated on 22/Jan/21

S = Σ_(n=1) ^∞ ((n+1)/n^3 )  S = Σ_(n=1) ^∞ (1/n^2 )+Σ_(n=1) ^∞ (1/n^3 )  S = ζ(2)+ζ(3) = (π^2 /6)+ζ(3)  ξ(3) : Apery constant ≈ 1,202

S=n=1n+1n3S=n=11n2+n=11n3S=ζ(2)+ζ(3)=π26+ζ(3)ξ(3):Aperyconstant1,202

Commented by Adel last updated on 22/Jan/21

what thes ς(2)  and  ς(3)   ?

whatthesς(2)andς(3)?

Commented by Ar Brandon last updated on 22/Jan/21

ζ(n)=Σ_(k=1) ^∞ (1/k^n )

ζ(n)=k=11kn

Commented by Olaf last updated on 22/Jan/21

ζ(s) = Σ_(n=1) ^∞ (1/n^s )  ζ(s) = Riemann zeta function.  For some values of s it′s known.  For example ζ(2) = (π^2 /6), ζ(4) = (π^4 /(90))  But for some values of s it′s approximative.  For example ζ(3) = Σ_(n=1) ^∞ (1/n^3 ) ≈ 1,202056903.

ζ(s)=n=11nsζ(s)=Riemannzetafunction.Forsomevaluesofsitsknown.Forexampleζ(2)=π26,ζ(4)=π490Butforsomevaluesofsitsapproximative.Forexampleζ(3)=n=11n31,202056903.

Commented by talminator2856791 last updated on 22/Jan/21

 is there proof that not all riemann zeta functions    have closed forms?

isthereproofthatnotallriemannzetafunctionshaveclosedforms?

Answered by Ar Brandon last updated on 22/Jan/21

S=Σ_(k=1) ^∞ ((k+1)/k^3 )=Σ_(k=1) ^∞ {(1/k^2 )+(1/k^3 )}     =ζ(2)+ζ(3)

S=k=1k+1k3=k=1{1k2+1k3}=ζ(2)+ζ(3)

Answered by Dwaipayan Shikari last updated on 22/Jan/21

Approximation of Σ_(n=1) ^∞ (1/n^3 )  f(x)=(1/x^3 )  Σ_(n=1) ^∞ (1/n^3 )=lim_(z→∞) ∫_1 ^∞ (1/x^3 )+((f(z)+f(1))/2)+Σ_(n=1) ^∞ (B_(2n) /((2n)!))(f^(2k−1) (z)−f^(2k−1) (1))  =(1/2)+(1/2)+(((3B_2 )/(2!))+((3.4.5)/(4!))B_4 +((3.4.5.6.7)/(6!))B_6 +((3.4.5.6.7.8.9)/(8!))B_8 +...)  =1.2020....   (B_n =Bernoulli number)  Even zeta function ζ(2n)  (n∈Z)  ζ(2)=(π^2 /6) ,ζ(4)=(π^4 /(90)),ζ(6)=(π^6 /(945)) ,ζ(8)=(π^8 /(9450))  ,ζ(10)=(π^(10) /(93555))....

Approximationofn=11n3f(x)=1x3n=11n3=limz11x3+f(z)+f(1)2+n=1B2n(2n)!(f2k1(z)f2k1(1))=12+12+(3B22!+3.4.54!B4+3.4.5.6.76!B6+3.4.5.6.7.8.98!B8+...)=1.2020....(Bn=Bernoullinumber)Evenzetafunctionζ(2n)(nZ)ζ(2)=π26,ζ(4)=π490,ζ(6)=π6945,ζ(8)=π89450,ζ(10)=π1093555....

Commented by Adel last updated on 23/Jan/21

thanks bro

thanksbro

Terms of Service

Privacy Policy

Contact: info@tinkutara.com