All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 130181 by Adel last updated on 23/Jan/21
Answered by Olaf last updated on 23/Jan/21
limx→3Γ(x+1)−6xx−33=limx→3Γ(x+1)−611(x−3)=limx→3Γ′(x+1)11=limx→3Γ(x+1)ψ(x+1)11=Γ(4)ψ(4)11=3!(H3−γ)11=6(116−γ)11=1−611γ(1)ψ(3)=H2−γ=32−γ(2)S=∑∞n=1(12)nn11−x=∑∞n=0xn−ln(1−x)=∑∞n=0xn+1n+1=∑∞n=1xnnForx=12,S=ln2(3)With(1),(2)and(3),theresultis:{(1−611γ)32−γ}ln2≈{(1−6110,5772156649)32−0,5772156649}ln2≈0,7851749027
Commented by Adel last updated on 23/Jan/21
thankssir
Commented by 0731619177 last updated on 24/Jan/21
hhhhhhhڅه وایی تره بچه
Terms of Service
Privacy Policy
Contact: info@tinkutara.com