Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 130181 by Adel last updated on 23/Jan/21

Answered by Olaf last updated on 23/Jan/21

  lim_(x→3) ((Γ(x+1)−6)/(xx−33))  = lim_(x→3) ((Γ(x+1)−6)/(11(x−3)))  = lim_(x→3) ((Γ′(x+1))/(11))  = lim_(x→3) ((Γ(x+1)ψ(x+1))/(11))  = ((Γ(4)ψ(4))/(11))  = ((3!(H_3 −γ))/(11))  = ((6(((11)/6)−γ))/(11))  = 1−(6/(11))γ    (1)    ψ(3) = H_2 −γ = (3/2)−γ    (2)    S = Σ_(n=1) ^∞ ((((1/2))^n )/n)  (1/(1−x)) = Σ_(n=0) ^∞ x^n   −ln(1−x) = Σ_(n=0) ^∞ (x^(n+1) /(n+1)) = Σ_(n=1) ^∞ (x^n /n)  For x = (1/2), S = ln2    (3)    With (1), (2) and (3), the result is :  {(1−(6/(11))γ)^((3/2)−γ) }^(ln2)   ≈ {(1−(6/(11))0,5772156649)^((3/2)−0,5772156649) }^(ln2)   ≈ 0,7851749027

limx3Γ(x+1)6xx33=limx3Γ(x+1)611(x3)=limx3Γ(x+1)11=limx3Γ(x+1)ψ(x+1)11=Γ(4)ψ(4)11=3!(H3γ)11=6(116γ)11=1611γ(1)ψ(3)=H2γ=32γ(2)S=n=1(12)nn11x=n=0xnln(1x)=n=0xn+1n+1=n=1xnnForx=12,S=ln2(3)With(1),(2)and(3),theresultis:{(1611γ)32γ}ln2{(16110,5772156649)320,5772156649}ln20,7851749027

Commented by Adel last updated on 23/Jan/21

thanks sir

thankssir

Commented by 0731619177 last updated on 24/Jan/21

hhhhhhh    څه وایی تره بچه

hhhhhhhڅه وایی تره بچه

Terms of Service

Privacy Policy

Contact: info@tinkutara.com