Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 130200 by mnjuly1970 last updated on 23/Jan/21

                 ... nice  cslculus...          find ::      L ( te^(−t) ln(t)) =_(transform) ^(laplace) ?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{nice}\:\:{cslculus}... \\ $$$$\:\:\:\:\:\:\:\:{find}\:::\:\:\:\:\:\:\mathscr{L}\:\left(\:{te}^{−{t}} {ln}\left({t}\right)\right)\:\underset{{transform}} {\overset{{laplace}} {=}}? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$

Answered by Dwaipayan Shikari last updated on 23/Jan/21

∫_0 ^∞ e^(−(s+1)t) tlog(t)dt        (s+1)u  =(1/((s+1)^2 ))∫_0 ^∞ e^(−u) ulog(u)−((log(s+1))/((s+1)^2 ))∫_0 ^∞ ue^(−u)   =((ψ(2)−log(1+s))/((s+1)^2 ))=−((γ+1+log(1+s))/((s+1)^2 ))

$$\int_{\mathrm{0}} ^{\infty} {e}^{−\left({s}+\mathrm{1}\right){t}} {tlog}\left({t}\right){dt}\:\:\:\:\:\:\:\:\left({s}+\mathrm{1}\right){u} \\ $$$$=\frac{\mathrm{1}}{\left({s}+\mathrm{1}\right)^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} {e}^{−{u}} {ulog}\left({u}\right)−\frac{{log}\left({s}+\mathrm{1}\right)}{\left({s}+\mathrm{1}\right)^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} {ue}^{−{u}} \\ $$$$=\frac{\psi\left(\mathrm{2}\right)−{log}\left(\mathrm{1}+{s}\right)}{\left({s}+\mathrm{1}\right)^{\mathrm{2}} }=−\frac{\gamma+\mathrm{1}+{log}\left(\mathrm{1}+{s}\right)}{\left({s}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Commented by mnjuly1970 last updated on 23/Jan/21

thank you   mercey...

$${thank}\:{you}\: \\ $$$${mercey}... \\ $$

Answered by mathmax by abdo last updated on 23/Jan/21

L(te^(−t) lnt)=∫_0 ^∞  xe^(−x) lnx e^(−tx) dx    (t>0)  =∫_0 ^∞ x e^(−(t+1)x) lnxdx =_((t+1)x=u)   ∫_0 ^∞ (u/(t+1))e^(−u) ln((u/(t+1)))(du/(t+1))  =(1/((t+1)^2 ))∫_0 ^∞  ue^(−u) (lnu−ln(t+1))du  =(1/((t+1)^2 )){∫_0 ^∞ ue^(−u) lnudu−ln(t+1)∫_0 ^∞  ue^(−u)  du}  ∫_0 ^∞  u e^(−u)  du =Γ(2)=1  Γ(x)=∫_0 ^∞  u^(x−1)  e^(−u) du =∫_0 ^∞  e^((x−1)lnu)  e^(−u)  du  ⇒Γ^′ (x)=∫_0 ^∞ e^(−u) lnu u^(x−1) du ⇒∫_0 ^∞  ue^(−u) lnudu=Γ^′ (2) ⇒  L(te^(−t) lnt)=((Γ^′ (2))/((t+1)^2 ))−((ln(t+1))/((t+1)^2 ))

$$\mathrm{L}\left(\mathrm{te}^{−\mathrm{t}} \mathrm{lnt}\right)=\int_{\mathrm{0}} ^{\infty} \:\mathrm{xe}^{−\mathrm{x}} \mathrm{lnx}\:\mathrm{e}^{−\mathrm{tx}} \mathrm{dx}\:\:\:\:\left(\mathrm{t}>\mathrm{0}\right) \\ $$$$=\int_{\mathrm{0}} ^{\infty} \mathrm{x}\:\mathrm{e}^{−\left(\mathrm{t}+\mathrm{1}\right)\mathrm{x}} \mathrm{lnxdx}\:=_{\left(\mathrm{t}+\mathrm{1}\right)\mathrm{x}=\mathrm{u}} \:\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{u}}{\mathrm{t}+\mathrm{1}}\mathrm{e}^{−\mathrm{u}} \mathrm{ln}\left(\frac{\mathrm{u}}{\mathrm{t}+\mathrm{1}}\right)\frac{\mathrm{du}}{\mathrm{t}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{t}+\mathrm{1}\right)^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \:\mathrm{ue}^{−\mathrm{u}} \left(\mathrm{lnu}−\mathrm{ln}\left(\mathrm{t}+\mathrm{1}\right)\right)\mathrm{du} \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{t}+\mathrm{1}\right)^{\mathrm{2}} }\left\{\int_{\mathrm{0}} ^{\infty} \mathrm{ue}^{−\mathrm{u}} \mathrm{lnudu}−\mathrm{ln}\left(\mathrm{t}+\mathrm{1}\right)\int_{\mathrm{0}} ^{\infty} \:\mathrm{ue}^{−\mathrm{u}} \:\mathrm{du}\right\} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\mathrm{u}\:\mathrm{e}^{−\mathrm{u}} \:\mathrm{du}\:=\Gamma\left(\mathrm{2}\right)=\mathrm{1} \\ $$$$\Gamma\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{\infty} \:\mathrm{u}^{\mathrm{x}−\mathrm{1}} \:\mathrm{e}^{−\mathrm{u}} \mathrm{du}\:=\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{\left(\mathrm{x}−\mathrm{1}\right)\mathrm{lnu}} \:\mathrm{e}^{−\mathrm{u}} \:\mathrm{du} \\ $$$$\Rightarrow\Gamma^{'} \left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{u}} \mathrm{lnu}\:\mathrm{u}^{\mathrm{x}−\mathrm{1}} \mathrm{du}\:\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\mathrm{ue}^{−\mathrm{u}} \mathrm{lnudu}=\Gamma^{'} \left(\mathrm{2}\right)\:\Rightarrow \\ $$$$\mathrm{L}\left(\mathrm{te}^{−\mathrm{t}} \mathrm{lnt}\right)=\frac{\Gamma^{'} \left(\mathrm{2}\right)}{\left(\mathrm{t}+\mathrm{1}\right)^{\mathrm{2}} }−\frac{\mathrm{ln}\left(\mathrm{t}+\mathrm{1}\right)}{\left(\mathrm{t}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com