Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 130203 by mnjuly1970 last updated on 23/Jan/21

Answered by Dwaipayan Shikari last updated on 23/Jan/21

I(a)−I(β)=∫_0 ^1 (x^a /((1+x)logx))−(x^β /((1+x)log(x)))dx  I′(a)−I′(β)=Σ_(n=1) ^∞ (−1)^(n+1) (1/(a+n+1))−Σ_(n=1) ^∞ (−1)^(n+1) (1/(β+n+1))  I(a)−I(β)=Σ_(n=1) ^∞ (−1)^(n+1) (log(a+n+1)−log(β+n+1))+C  I(a)−I(β)=Σ_(n=1) ^∞ (−1)^(n+1) log(((a+n+1)/(β+n+1)))    (C=0  when a=0 , β=0)  I(0)−I(1)=Σ_(n=1) ^∞ (−1)^(n+1) log(((n+1)/(n+2)))=Σ_(n=1) ^∞ (−1)^n log(1+(1/(n+1)))  I(a)=∫_0 ^1 ((1−x^a )/((1+x)log(x)))dx ⇒I′(a)=∫_0 ^1 ((−x^a )/((1+x)))dx=−∫_0 ^1 ((x^a −x^(a+1) )/(1−x^2 ))dx  =∫_0 ^1 (x^(a+1) /(1−x^2 ))−(x^a /(1−x^2 ))dx                x^2 =u  =(1/2)∫_0 ^1 ((1−u^((a−1)/2) )/(1−u))−((1−u^(a/2) )/(1−u))du=(1/2)(ψ(((a+1)/2))−ψ(((a+2)/2)))  I(a)=(1/2)∫ψ(((a+1)/2))−ψ(((a+2)/2)) da =log(((Γ(((a+1)/2)))/(Γ((a/2)+1))))+C  a=0    C=−(1/2)log(π)  I(a)=log(((Γ(((a+1)/2)))/(Γ((a/2)+1)(√π))))⇒I(1)=log((2/π))

$${I}\left({a}\right)−{I}\left(\beta\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{a}} }{\left(\mathrm{1}+{x}\right){logx}}−\frac{{x}^{\beta} }{\left(\mathrm{1}+{x}\right){log}\left({x}\right)}{dx} \\ $$$${I}'\left({a}\right)−{I}'\left(\beta\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{\mathrm{1}}{{a}+{n}+\mathrm{1}}−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{\mathrm{1}}{\beta+{n}+\mathrm{1}} \\ $$$${I}\left({a}\right)−{I}\left(\beta\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \left({log}\left({a}+{n}+\mathrm{1}\right)−{log}\left(\beta+{n}+\mathrm{1}\right)\right)+{C} \\ $$$${I}\left({a}\right)−{I}\left(\beta\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {log}\left(\frac{{a}+{n}+\mathrm{1}}{\beta+{n}+\mathrm{1}}\right)\:\:\:\:\left({C}=\mathrm{0}\:\:{when}\:{a}=\mathrm{0}\:,\:\beta=\mathrm{0}\right) \\ $$$${I}\left(\mathrm{0}\right)−{I}\left(\mathrm{1}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {log}\left(\frac{{n}+\mathrm{1}}{{n}+\mathrm{2}}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} {log}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}+\mathrm{1}}\right) \\ $$$${I}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}^{{a}} }{\left(\mathrm{1}+{x}\right){log}\left({x}\right)}{dx}\:\Rightarrow{I}'\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{−{x}^{{a}} }{\left(\mathrm{1}+{x}\right)}{dx}=−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{a}} −{x}^{{a}+\mathrm{1}} }{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{a}+\mathrm{1}} }{\mathrm{1}−{x}^{\mathrm{2}} }−\frac{{x}^{{a}} }{\mathrm{1}−{x}^{\mathrm{2}} }{dx}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} ={u} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{u}^{\frac{{a}−\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}−{u}}−\frac{\mathrm{1}−{u}^{\frac{{a}}{\mathrm{2}}} }{\mathrm{1}−{u}}{du}=\frac{\mathrm{1}}{\mathrm{2}}\left(\psi\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)−\psi\left(\frac{{a}+\mathrm{2}}{\mathrm{2}}\right)\right) \\ $$$${I}\left({a}\right)=\frac{\mathrm{1}}{\mathrm{2}}\int\psi\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)−\psi\left(\frac{{a}+\mathrm{2}}{\mathrm{2}}\right)\:{da}\:={log}\left(\frac{\Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)}\right)+{C} \\ $$$${a}=\mathrm{0}\:\:\:\:{C}=−\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\pi\right) \\ $$$${I}\left({a}\right)={log}\left(\frac{\Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)\sqrt{\pi}}\right)\Rightarrow{I}\left(\mathrm{1}\right)={log}\left(\frac{\mathrm{2}}{\pi}\right) \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 23/Jan/21

tayeb allah mr dwaypayan   nice way...

$${tayeb}\:{allah}\:{mr}\:{dwaypayan} \\ $$$$\:{nice}\:{way}... \\ $$

Commented by Dwaipayan Shikari last updated on 23/Jan/21

With pleasure

$${With}\:{pleasure} \\ $$

Answered by Dwaipayan Shikari last updated on 23/Jan/21

Another way  Σ_(n=1) ^∞ (−1)^n log(1+(1/n))=−log((2/1).(2/3).(3/2).(3/4)...)=log((2/π))

$${Another}\:{way} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} {log}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)=−{log}\left(\frac{\mathrm{2}}{\mathrm{1}}.\frac{\mathrm{2}}{\mathrm{3}}.\frac{\mathrm{3}}{\mathrm{2}}.\frac{\mathrm{3}}{\mathrm{4}}...\right)={log}\left(\frac{\mathrm{2}}{\pi}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com