Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 130213 by benjo_mathlover last updated on 23/Jan/21

 The closest distance from the point on   the ellipse 2x^2 −y^2 =8 to the line y=5x  is __

Theclosestdistancefromthepointontheellipse2x2y2=8totheliney=5xis__

Answered by liberty last updated on 23/Jan/21

gradient tangent line of   ellipse : 4x−2yy′=0   ⇒y′=((2x)/y) equals to 5 ; we get 5y=2x  substitute into eq of ellipse   2x^2 −(((2x)/5))^2 =8 ; 46x^2  = 8×25   x=± ((10)/( (√(23)))) ⇒y=±(4/( (√(23))))  Now equation of tangent line  the ellipse is 5x−y=((46)/( (√(23)))) or  5x−y=2(√(23)) , so the closest   distance is required equals to   d = ((2(√(23)))/( (√(26))))

gradienttangentlineofellipse:4x2yy=0y=2xyequalsto5;weget5y=2xsubstituteintoeqofellipse2x2(2x5)2=8;46x2=8×25x=±1023y=±423Nowequationoftangentlinetheellipseis5xy=4623or5xy=223,sotheclosestdistanceisrequiredequalstod=22326

Commented by liberty last updated on 23/Jan/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com