All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 130254 by Eric002 last updated on 23/Jan/21
prove∫0∞ln2(x)ln(1+x2)1+x2dx=7π4ζ(3)+π3ln(2)4whereζ(3)isapery,sconstant
Answered by mindispower last updated on 26/Jan/21
∫0π2(ln2(sin(x))+ln2(cos2(x))−2ln(sin(x))ln(cos(x)).ln(1cos2(x))dx=−2∫0π2ln2(sin(x))ln(cos(x))dx−2∫0π2ln3(cos(x))dx+4∫0π2ln2(cos(x))ln(sin(x))dx=−2A−2B+4Crecallβ(a,b)=2∫0π2cos2a−1(x)sin2b−1(x)dx∂3∂2b∂aβ(12,12)=8A,∂3∂2a∂bβ(12,12)=8C∂3β(12,12)∂3a=8B∂aβ(a,b)=β(a,b)(Ψ(a)−Ψ(a+b))∂a2β(a,b)=β(a,b)(Ψ(a)−Ψ(a+b)2+(Ψ′(a)−Ψ′(a+b))β(a,b)∂a2∂bβ(a,b)=β(a,b)(Ψ(b)−Ψ(a+b))(Ψ(a)−Ψ(a+b))2−2Ψ′(a+b)(Ψ(a)−Ψ(a+b))(Ψ(a)−Ψ(a+b))β(a,b)+β(a,b)(Ψ(b)−Ψ(a+b)))(Ψ′(a)−Ψ′(a+b))−Ψ″(a+b)β(a,b))∂2a∂bβ(12,12)iwillfinish?itlaterΨ(12)caneaslyvalutedΨ′(1)=ζ(2)=π26...=
Terms of Service
Privacy Policy
Contact: info@tinkutara.com