Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 130254 by Eric002 last updated on 23/Jan/21

prove  ∫_0 ^∞ ((ln^2 (x)ln(1+x^2 ))/(1+x^2 ))dx=((7π)/4)ζ(3)+((π^3 ln(2))/4)  where ζ(3) is a pery^( ,) s constant

prove0ln2(x)ln(1+x2)1+x2dx=7π4ζ(3)+π3ln(2)4whereζ(3)isapery,sconstant

Answered by mindispower last updated on 26/Jan/21

∫_0 ^(π/2) (ln^2 (sin(x))+ln^2 (cos^2 (x))−2ln(sin(x))ln(cos(x)).ln((1/(cos^2 (x))))dx  =−2∫_0 ^(π/2) ln^2 (sin(x))ln(cos(x))dx−2∫_0 ^(π/2) ln^3 (cos(x))dx  +4∫_0 ^(π/2) ln^2 (cos(x))ln(sin(x))dx=−2A−2B+4C  recall  β(a,b)=2∫_0 ^(π/2) cos^(2a−1) (x)sin^(2b−1) (x)dx  (∂^3 /(∂^2 b∂a))β((1/2),(1/2))=8A,(∂^3 /(∂^2 a∂b))β((1/2),(1/2))=8C  ((∂^3 β((1/2),(1/2)))/∂^3 a)=8B  ∂_a β(a,b)=β(a,b)(Ψ(a)−Ψ(a+b))  ∂_a ^2 β(a,b)=β(a,b)(Ψ(a)−Ψ(a+b)^2 +(Ψ′(a)−Ψ′(a+b))β(a,b)  ∂_a ^2 ∂_b β(a,b)=β(a,b)(Ψ(b)−Ψ(a+b))(Ψ(a)−Ψ(a+b))^2   −2Ψ′(a+b)(Ψ(a)−Ψ(a+b))(Ψ(a)−Ψ(a+b))β(a,b)  +β(a,b)(Ψ(b)−Ψ(a+b)))(Ψ′(a)−Ψ′(a+b))  −Ψ′′(a+b)β(a,b))  ∂^2 a∂bβ((1/2_ ),(1/2))  i will finish?it later  Ψ((1/2)) can easly valuted  Ψ′(1)=ζ(2)=(π^2 /6)...=

0π2(ln2(sin(x))+ln2(cos2(x))2ln(sin(x))ln(cos(x)).ln(1cos2(x))dx=20π2ln2(sin(x))ln(cos(x))dx20π2ln3(cos(x))dx+40π2ln2(cos(x))ln(sin(x))dx=2A2B+4Crecallβ(a,b)=20π2cos2a1(x)sin2b1(x)dx32baβ(12,12)=8A,32abβ(12,12)=8C3β(12,12)3a=8Baβ(a,b)=β(a,b)(Ψ(a)Ψ(a+b))a2β(a,b)=β(a,b)(Ψ(a)Ψ(a+b)2+(Ψ(a)Ψ(a+b))β(a,b)a2bβ(a,b)=β(a,b)(Ψ(b)Ψ(a+b))(Ψ(a)Ψ(a+b))22Ψ(a+b)(Ψ(a)Ψ(a+b))(Ψ(a)Ψ(a+b))β(a,b)+β(a,b)(Ψ(b)Ψ(a+b)))(Ψ(a)Ψ(a+b))Ψ(a+b)β(a,b))2abβ(12,12)iwillfinish?itlaterΨ(12)caneaslyvalutedΨ(1)=ζ(2)=π26...=

Terms of Service

Privacy Policy

Contact: info@tinkutara.com