Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 130287 by naka3546 last updated on 24/Jan/21

∫ (x/(x^4 +1)) dx  =  ?

xx4+1dx=?

Answered by mathmax by abdo last updated on 24/Jan/21

I =∫  ((xdx)/(x^4  +1)) let decompose F(x)=(x/(x^4  +1)) ⇒  F(x)=(x/((x^2 +1)^2 −2x^2 ))=(x/((x^2 +1−(√2)x)(x^(2 ) +1+(√2)x)))  =((ax+b)/(x^2 −(√2)x +1))+((mx+n)/(x^2  +(√2)x+1)) we see[that F(x)=(1/(2(√2)))((1/(x^2 −(√2)x+1))−(1/(x^2 +(√2)x+1)))  ⇒∫ F(x)dx=(1/(2(√2)))∫  (dx/(x^2 −2((√2)/2)x+(1/2)+(1/2)))−(1/(2(√2)))∫ (dx/(x^2  +2((√2)/2)x+(1/2)+(1/2)))  =(1/(2(√2)))∫  (dx/((x−(1/( (√2))))^2  +(1/2)))(→x−(1/( (√2)))=(u/( (√2))))−(1/(2(√2)))∫ (dx/((x+(1/( (√2))))^2  +(1/2)))(→x+(1/( (√2)))=(v/( (√2))))  =(1/(2(√2)))∫  (du/( (√2)((1/2)(u^2  +1))))−(1/(2(√2)))∫ (dv/( (√2)(1/2)(v^2  +1)))  =(1/2)∫  (du/(u^2  +1))−(1/2)∫ (dv/(v^(2 ) +1)) =(1/2)arctan(u)−(1/2)arctanv +C  =(1/2)arctan((√2)x−1)−(1/2)arctan((√2)x+1) +C

I=xdxx4+1letdecomposeF(x)=xx4+1F(x)=x(x2+1)22x2=x(x2+12x)(x2+1+2x)=ax+bx22x+1+mx+nx2+2x+1wesee[thatF(x)=122(1x22x+11x2+2x+1)F(x)dx=122dxx2222x+12+12122dxx2+222x+12+12=122dx(x12)2+12(x12=u2)122dx(x+12)2+12(x+12=v2)=122du2(12(u2+1))122dv212(v2+1)=12duu2+112dvv2+1=12arctan(u)12arctanv+C=12arctan(2x1)12arctan(2x+1)+C

Commented by naka3546 last updated on 24/Jan/21

thanks, sir .    How  about  ∫  (x/(x^4 +3)) dx  ?

thanks,sir.Howaboutxx4+3dx?

Commented by Ar Brandon last updated on 24/Jan/21

∫(x/(x^4 +3))dx=(1/2)∫(du/(u^2 +3))=((tan^(−1) (x^2 /(√3)))/(2(√3)))+C

xx4+3dx=12duu2+3=tan1(x2/3)23+C

Commented by mathmax by abdo last updated on 24/Jan/21

∫  ((xdx)/(x^4  +3)) =∫  ((xdx)/(3((x^4 /3)+1))) =∫  ((xdx)/(3(((x/( (^4 (√3)))))^4 +1)))  =_((x/((^4 (√3))))=t)      (1/3)∫  (((^4 (√3))t)/(1+t^4 ))(^4 (√3))dt =(3^(2/4) /3) ∫  ((tdt)/(1+t^4 )) =....

xdxx4+3=xdx3(x43+1)=xdx3((x(43))4+1)=x(43)=t13(43)t1+t4(43)dt=3243tdt1+t4=....

Commented by mathmax by abdo last updated on 26/Jan/21

you are welcome

youarewelcome

Answered by Ar Brandon last updated on 24/Jan/21

I=∫(x/(x^4 +1))dx , x^2 =u     =(1/2)∫(du/(u^2 +1))=((tan^(−1) (u))/2)+C     =((tan^(−1) (x^2 ))/2)+C

I=xx4+1dx,x2=u=12duu2+1=tan1(u)2+C=tan1(x2)2+C

Answered by mnjuly1970 last updated on 24/Jan/21

x^2 =u  xdx=(du/2)  φ=∫(du/(2(u^2 +1)))=(1/2) tan^(−1) (x^2 )+C...

x2=uxdx=du2ϕ=du2(u2+1)=12tan1(x2)+C...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com