Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 130317 by stelor last updated on 24/Jan/21

Answered by mathmax by abdo last updated on 24/Jan/21

I=∫_(−∞) ^(+∞)  x e^(−(x^2 /2)) dx  we do the changement (x/( (√2)))=t ⇒  I=∫_(−∞) ^(+∞)  (√2)t e^(−t^2 ) (√2)dt =2∫_(−∞) ^(+∞)  t e^(−t^2 ) dt =[−e^(−t^2 ) ]_(−∞) ^(+∞)  =0  also we can see that x→xe^(−((x2)/2))  is odd  J=∫_(−∞) ^(+∞)  x^2  e^(−(x^2 /2)) dx  =_((x/( (√2)))=t)    ∫_(−∞) ^(+∞)  2t^2  e^(−t^2 ) (√2)dt  =2(√2)∫_(−∞) ^(+∞)  t^2  e^(−t^2 ) dt   but  we get by parts  ∫_(−∞) ^(+∞)  t(te^(−t^2 ) )dt =[−(1/2)e^(−t^2 ) .t]_(−∞) ^(+∞) +∫_(−∞) ^(+∞)  (1/2)e^(−t^2 ) dt  =(1/2)∫_(−∞) ^(+∞)  e^(−t^2 ) dt =((√π)/2) ⇒J=2(√2)×((√π)/2)=(√(2π))

$$\mathrm{I}=\int_{−\infty} ^{+\infty} \:\mathrm{x}\:\mathrm{e}^{−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}} \mathrm{dx}\:\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\frac{\mathrm{x}}{\:\sqrt{\mathrm{2}}}=\mathrm{t}\:\Rightarrow \\ $$$$\mathrm{I}=\int_{−\infty} ^{+\infty} \:\sqrt{\mathrm{2}}\mathrm{t}\:\mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } \sqrt{\mathrm{2}}\mathrm{dt}\:=\mathrm{2}\int_{−\infty} ^{+\infty} \:\mathrm{t}\:\mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } \mathrm{dt}\:=\left[−\mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } \right]_{−\infty} ^{+\infty} \:=\mathrm{0} \\ $$$$\mathrm{also}\:\mathrm{we}\:\mathrm{can}\:\mathrm{see}\:\mathrm{that}\:\mathrm{x}\rightarrow\mathrm{xe}^{−\frac{\mathrm{x2}}{\mathrm{2}}} \:\mathrm{is}\:\mathrm{odd} \\ $$$$\mathrm{J}=\int_{−\infty} ^{+\infty} \:\mathrm{x}^{\mathrm{2}} \:\mathrm{e}^{−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}} \mathrm{dx}\:\:=_{\frac{\mathrm{x}}{\:\sqrt{\mathrm{2}}}=\mathrm{t}} \:\:\:\int_{−\infty} ^{+\infty} \:\mathrm{2t}^{\mathrm{2}} \:\mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } \sqrt{\mathrm{2}}\mathrm{dt} \\ $$$$=\mathrm{2}\sqrt{\mathrm{2}}\int_{−\infty} ^{+\infty} \:\mathrm{t}^{\mathrm{2}} \:\mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } \mathrm{dt}\:\:\:\mathrm{but}\:\:\mathrm{we}\:\mathrm{get}\:\mathrm{by}\:\mathrm{parts} \\ $$$$\int_{−\infty} ^{+\infty} \:\mathrm{t}\left(\mathrm{te}^{−\mathrm{t}^{\mathrm{2}} } \right)\mathrm{dt}\:=\left[−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } .\mathrm{t}\right]_{−\infty} ^{+\infty} +\int_{−\infty} ^{+\infty} \:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } \mathrm{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} \:\mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } \mathrm{dt}\:=\frac{\sqrt{\pi}}{\mathrm{2}}\:\Rightarrow\mathrm{J}=\mathrm{2}\sqrt{\mathrm{2}}×\frac{\sqrt{\pi}}{\mathrm{2}}=\sqrt{\mathrm{2}\pi} \\ $$

Commented by stelor last updated on 25/Jan/21

merci    cool.^

$$\mathrm{merci}\:\:\:\:\mathrm{cool}\overset{} {.} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com