Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 130362 by greg_ed last updated on 24/Jan/21

f(x)=((2x+1)/( (√(x^2 −∣2x−3∣))))  Domain D_f  = ?

f(x)=2x+1x22x3DomainDf=?

Answered by ajfour last updated on 24/Jan/21

x^2 >∣2x−3∣  let  x≥(3/2)  &    x^2 −2x+3>0  ⇒  (x−1)^2 +2 >0  ⇒   x∈[(3/2),∞)       and if x<(3/2)     x^2 +2x−3 > 0     (x+1)^2 >4       x<−3 or   x> 1  ⇒  x∈(−∞,−3)∪(1,(3/2))  ⇒  x∈R−[−3,1]

x2>∣2x3letx32&x22x+3>0(x1)2+2>0x[32,)andifx<32x2+2x3>0(x+1)2>4x<3orx>1x(,3)(1,32)xR[3,1]

Answered by mathmax by abdo last updated on 24/Jan/21

f(x)=((2x+1)/( (√(x^2 −∣2x−3∣))))  x             −∞                   (3/2)              +∞  ∣2x−3∣              −2x+3  0   2x−3  f(x)             ((2x+1)/( (√(x^2 +2x−3))))...    ((2x+1)/( (√(x^2 −2x+3))))  case1 x<(3/2) ⇒f(x)=((2x+1)/( (√(x^2  +2x−3))))  x∈D_f  ⇔x^2  +2x−3>0 ⇔x^2 +2x+1−4>0 ⇒(x+1)^2 −4>0 ⇒  (x+1−2)(x+1+2)>0 ⇒(x−1)(x+3)>0  ⇒x∈]−∞,−3[∪]1,+∞[ ⇒  D_f =]−∞,−3[∪]1,(3/2)[  case 2  x≥(3/2) ⇒f(x)=((2x+1)/( (√(x^2 −2x+3))))  x∈D_f  ⇔ x^2 −2x+3>0 ⇒(x−1)^2  +2>0  ⇒D_f =[(3/2),+∞[

f(x)=2x+1x22x3x32+2x32x+302x3f(x)2x+1x2+2x3...2x+1x22x+3case1x<32f(x)=2x+1x2+2x3xDfx2+2x3>0x2+2x+14>0(x+1)24>0(x+12)(x+1+2)>0(x1)(x+3)>0x],3[]1,+[Df=],3[]1,32[case2x32f(x)=2x+1x22x+3xDfx22x+3>0(x1)2+2>0Df=[32,+[

Answered by MJS_new last updated on 25/Jan/21

f(x)=((2x+1)/( (√(x^2 −∣2x−3∣))))  (1) 2x+1=0 ⇔ x=−(1/2) ⇒ f(x)=0  (2) x^2 −∣2x−3∣>0 ⇒ x<−3∨1<x  ⇒  D_f ={x∈R∣x<−3∨1<x∨x=−(1/2)}

f(x)=2x+1x22x3(1)2x+1=0x=12f(x)=0(2)x22x3∣>0x<31<xDf={xRx<31<xx=12}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com