All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 130362 by greg_ed last updated on 24/Jan/21
f(x)=2x+1x2−∣2x−3∣DomainDf=?
Answered by ajfour last updated on 24/Jan/21
x2>∣2x−3∣letx⩾32&x2−2x+3>0⇒(x−1)2+2>0⇒x∈[32,∞)andifx<32x2+2x−3>0(x+1)2>4x<−3orx>1⇒x∈(−∞,−3)∪(1,32)⇒x∈R−[−3,1]
Answered by mathmax by abdo last updated on 24/Jan/21
f(x)=2x+1x2−∣2x−3∣x−∞32+∞∣2x−3∣−2x+302x−3f(x)2x+1x2+2x−3...2x+1x2−2x+3case1x<32⇒f(x)=2x+1x2+2x−3x∈Df⇔x2+2x−3>0⇔x2+2x+1−4>0⇒(x+1)2−4>0⇒(x+1−2)(x+1+2)>0⇒(x−1)(x+3)>0⇒x∈]−∞,−3[∪]1,+∞[⇒Df=]−∞,−3[∪]1,32[case2x⩾32⇒f(x)=2x+1x2−2x+3x∈Df⇔x2−2x+3>0⇒(x−1)2+2>0⇒Df=[32,+∞[
Answered by MJS_new last updated on 25/Jan/21
f(x)=2x+1x2−∣2x−3∣(1)2x+1=0⇔x=−12⇒f(x)=0(2)x2−∣2x−3∣>0⇒x<−3∨1<x⇒Df={x∈R∣x<−3∨1<x∨x=−12}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com