Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 130392 by mathmax by abdo last updated on 25/Jan/21

find ∫_(∣z∣=1)   ((1−cosz)/z^2 )dz

$$\mathrm{find}\:\int_{\mid\mathrm{z}\mid=\mathrm{1}} \:\:\frac{\mathrm{1}−\mathrm{cosz}}{\mathrm{z}^{\mathrm{2}} }\mathrm{dz} \\ $$

Answered by mohammad17 last updated on 25/Jan/21

hello sir can you help me in Q 130416

$${hello}\:{sir}\:{can}\:{you}\:{help}\:{me}\:{in}\:{Q}\:\mathrm{130416} \\ $$

Answered by mathmax by abdo last updated on 25/Jan/21

∫_(∣z∣=1)   ((1−cosz)/z^2 )dz =2iπ Res(f,0) with f(z)=((1−cosz)/z^2 )  o is double pole ⇒Res(f,o)=lim_(z→0)   (1/((2−1)!)){z^2 f(z)}^((1))   =lim_(z→0)    (1−cosz)^((1))  =lim_(z→0)  sinz =0  another way ∣z∣=1 ⇒z=e^(iθ)  ⇒∫_(∣z∣=1)   ((1−cosz)/z^2 ) =∫_0 ^(2π)  ((1−cos(e^(iθ) ))/e^(2iθ) )ie^(iθ) dθ  =i∫_0 ^(2π) e^(−iθ) (1−cos(e^(iθ) ))dθ =i∫_0 ^(2π)  e^(−iθ)  dθ−i∫_0 ^(2π)  e^(−iθ)  cos(e^(iθ) )dθ  =0−i∫_0 ^(2π)  e^(−iθ) (Σ_(n=0) ^∞  (((−1)^n  e^(2inθ) )/((2n)!)))dθ  =−iΣ_(n=0) ^∞  (((−1)^n )/(2n!)) ∫_0 ^(2π)  e^((2n−1)iθ)   dθ  =−iΣ_(n=0) ^∞  (((−1)^n )/((2n)!))[(1/((2n−1)))e^((2n−1)iθ) ]_0 ^(2π)  =0

$$\int_{\mid\mathrm{z}\mid=\mathrm{1}} \:\:\frac{\mathrm{1}−\mathrm{cosz}}{\mathrm{z}^{\mathrm{2}} }\mathrm{dz}\:=\mathrm{2i}\pi\:\mathrm{Res}\left(\mathrm{f},\mathrm{0}\right)\:\mathrm{with}\:\mathrm{f}\left(\mathrm{z}\right)=\frac{\mathrm{1}−\mathrm{cosz}}{\mathrm{z}^{\mathrm{2}} } \\ $$$$\mathrm{o}\:\mathrm{is}\:\mathrm{double}\:\mathrm{pole}\:\Rightarrow\mathrm{Res}\left(\mathrm{f},\mathrm{o}\right)=\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{0}} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{\mathrm{z}^{\mathrm{2}} \mathrm{f}\left(\mathrm{z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$=\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{0}} \:\:\:\left(\mathrm{1}−\mathrm{cosz}\right)^{\left(\mathrm{1}\right)} \:=\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{0}} \:\mathrm{sinz}\:=\mathrm{0} \\ $$$$\mathrm{another}\:\mathrm{way}\:\mid\mathrm{z}\mid=\mathrm{1}\:\Rightarrow\mathrm{z}=\mathrm{e}^{\mathrm{i}\theta} \:\Rightarrow\int_{\mid\mathrm{z}\mid=\mathrm{1}} \:\:\frac{\mathrm{1}−\mathrm{cosz}}{\mathrm{z}^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{e}^{\mathrm{i}\theta} \right)}{\mathrm{e}^{\mathrm{2i}\theta} }\mathrm{ie}^{\mathrm{i}\theta} \mathrm{d}\theta \\ $$$$=\mathrm{i}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{e}^{−\mathrm{i}\theta} \left(\mathrm{1}−\mathrm{cos}\left(\mathrm{e}^{\mathrm{i}\theta} \right)\right)\mathrm{d}\theta\:=\mathrm{i}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\mathrm{e}^{−\mathrm{i}\theta} \:\mathrm{d}\theta−\mathrm{i}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\mathrm{e}^{−\mathrm{i}\theta} \:\mathrm{cos}\left(\mathrm{e}^{\mathrm{i}\theta} \right)\mathrm{d}\theta \\ $$$$=\mathrm{0}−\mathrm{i}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\mathrm{e}^{−\mathrm{i}\theta} \left(\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{e}^{\mathrm{2in}\theta} }{\left(\mathrm{2n}\right)!}\right)\mathrm{d}\theta \\ $$$$=−\mathrm{i}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}!}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\mathrm{e}^{\left(\mathrm{2n}−\mathrm{1}\right)\mathrm{i}\theta} \:\:\mathrm{d}\theta \\ $$$$=−\mathrm{i}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}\right)!}\left[\frac{\mathrm{1}}{\left(\mathrm{2n}−\mathrm{1}\right)}\mathrm{e}^{\left(\mathrm{2n}−\mathrm{1}\right)\mathrm{i}\theta} \right]_{\mathrm{0}} ^{\mathrm{2}\pi} \:=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com