Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 130416 by mohammad17 last updated on 25/Jan/21

find singular point for each     (1)f(z)=(e^z /z^2 )       ,    (2)f(z)=((sinz)/z)   ,    (3)f(z)=((1−cosz)/(sinz^2 ))     ,   (4)f(z)=ln∣z∣    how can solve this help me sir

$${find}\:{singular}\:{point}\:{for}\:{each}\: \\ $$$$ \\ $$$$\left(\mathrm{1}\right){f}\left({z}\right)=\frac{{e}^{{z}} }{{z}^{\mathrm{2}} }\:\:\:\:\:\:\:,\:\:\:\:\left(\mathrm{2}\right){f}\left({z}\right)=\frac{{sinz}}{{z}}\:\:\:, \\ $$$$ \\ $$$$\left(\mathrm{3}\right){f}\left({z}\right)=\frac{\mathrm{1}−{cosz}}{{sinz}^{\mathrm{2}} }\:\:\:\:\:,\:\:\:\left(\mathrm{4}\right){f}\left({z}\right)={ln}\mid{z}\mid \\ $$$$ \\ $$$${how}\:{can}\:{solve}\:{this}\:{help}\:{me}\:{sir} \\ $$

Answered by mathmax by abdo last updated on 25/Jan/21

1) f(z)=(e^z /z^2 )   ,o is a singular point   (alsodouble pole)  and Res(f,o)=lim_(z→0)   (1/((2−1)!)){z^2 f(z)}^((1))  =lim_(z→o)   {e^z }^((1))   =lim_(z→0)     e^z  =1  another way  we have f(z)=(1/z^2 )Σ_(n=0) ^∞  (z^n /(n!))  =Σ_(n=0) ^∞  (1/(n!))z^(n−2)  =(1/z^2 )+(1/z) +(1/2) +(1/(3!))z +(1/(4!))z^2 +....  Res(f,o)=coefficient of((1/z))=1  2)f(z)=((sinz)/z)  ,o is singular point also simple pole and  Res(f,o)=lim_(z→0) zf(z)=lim_(z→0) sinz=0

$$\left.\mathrm{1}\right)\:\mathrm{f}\left(\mathrm{z}\right)=\frac{\mathrm{e}^{\mathrm{z}} }{\mathrm{z}^{\mathrm{2}} }\:\:\:,\mathrm{o}\:\mathrm{is}\:\mathrm{a}\:\mathrm{singular}\:\mathrm{point}\:\:\:\left(\mathrm{alsodouble}\:\mathrm{pole}\right) \\ $$$$\mathrm{and}\:\mathrm{Res}\left(\mathrm{f},\mathrm{o}\right)=\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{0}} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{\mathrm{z}^{\mathrm{2}} \mathrm{f}\left(\mathrm{z}\right)\right\}^{\left(\mathrm{1}\right)} \:=\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{o}} \:\:\left\{\mathrm{e}^{\mathrm{z}} \right\}^{\left(\mathrm{1}\right)} \\ $$$$=\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{0}} \:\:\:\:\mathrm{e}^{\mathrm{z}} \:=\mathrm{1} \\ $$$$\mathrm{another}\:\mathrm{way}\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{f}\left(\mathrm{z}\right)=\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{2}} }\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{z}^{\mathrm{n}} }{\mathrm{n}!} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}!}\mathrm{z}^{\mathrm{n}−\mathrm{2}} \:=\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{z}}\:+\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}!}\mathrm{z}\:+\frac{\mathrm{1}}{\mathrm{4}!}\mathrm{z}^{\mathrm{2}} +.... \\ $$$$\mathrm{Res}\left(\mathrm{f},\mathrm{o}\right)=\mathrm{coefficient}\:\mathrm{of}\left(\frac{\mathrm{1}}{\mathrm{z}}\right)=\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\mathrm{f}\left(\mathrm{z}\right)=\frac{\mathrm{sinz}}{\mathrm{z}}\:\:,\mathrm{o}\:\mathrm{is}\:\mathrm{singular}\:\mathrm{point}\:\mathrm{also}\:\mathrm{simple}\:\mathrm{pole}\:\mathrm{and} \\ $$$$\mathrm{Res}\left(\mathrm{f},\mathrm{o}\right)=\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{0}} \mathrm{zf}\left(\mathrm{z}\right)=\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{0}} \mathrm{sinz}=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com