Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 130431 by mnjuly1970 last updated on 25/Jan/21

              ... nice   calculus...   please  evaluate ::     φ=∫_0 ^( ∞) tanh(x).e^(−sx) dx=??         (  s>0   and   real...)

...nicecalculus... pleaseevaluate:: ϕ=0tanh(x).esxdx=?? (s>0andreal...)

Answered by Dwaipayan Shikari last updated on 25/Jan/21

∫_0 ^∞ ((e^(2x) −1)/(e^(2x) +1))e^(−sx) dx  =Σ_(n=1) ^∞ (−1)^(n+1) ∫_0 ^∞ e^(−2nx) e^(2x−sx) −e^(−2nx−sx) dx         =Σ_(n=1) ^∞ (−1)^(n+1) (1/((2n+s−2)  ))−(1/((2n+s)))  =((1/s)−(1/(2+s))+(1/(4+s))−(1/(6+s))−..)−((1/(2+s))−(1/(4+s))+...)  =2((1/s)+(1/(4+s))+(1/(8+s))+...)−2((1/(2+s))+(1/(6+s))+(1/(10+s))+...)−(1/s)  =(1/2)(Σ_(n=0) ^∞ (1/(n+(s/4)))−Σ_(n=0) ^∞ (1/(n+(1/2)+(s/4))))−(1/s)  =(1/2)(ψ((1/2)+(s/4))−ψ((s/4)))−(1/s)

0e2x1e2x+1esxdx =n=1(1)n+10e2nxe2xsxe2nxsxdx =n=1(1)n+11(2n+s2)1(2n+s) =(1s12+s+14+s16+s..)(12+s14+s+...) =2(1s+14+s+18+s+...)2(12+s+16+s+110+s+...)1s =12(n=01n+s4n=01n+12+s4)1s =12(ψ(12+s4)ψ(s4))1s

Commented bymnjuly1970 last updated on 25/Jan/21

perfect mr payan..

perfectmrpayan..

Commented byDwaipayan Shikari last updated on 25/Jan/21

for s=1  ,   (1/2)(ψ((3/4))−ψ((1/4)))−(1/s)=(1/2)∫_0 ^1 ((x^(−(3/4)) −x^(−(1/4)) )/(1−x))dx−(1/s)  , x=u^4   =2∫_0 ^1 ((1−u^2 )/(1−u^4 ))−(1/1)du=2.(π/4)−1=(π/2)−1

fors=1,12(ψ(34)ψ(14))1s=1201x34x141xdx1s,x=u4 =2011u21u411du=2.π41=π21

Commented bymnjuly1970 last updated on 25/Jan/21

thanks alot ...

thanksalot...

Answered by mnjuly1970 last updated on 26/Jan/21

   φ=∫_0 ^( ∞) ((e^(2x) −1)/(e^(2x) +1))∗e^(−sx) dx         =_(x:=−ln((√t) )) ^(2x:=−ln(t)) ∫_0 ^( 1) (((1/t)−1)/((1/t)+1))∗t^(s/2) ((1/(2t)))dt                  =(1/2)∫_0 ^( 1) ((1−t)/(1+t))∗t^((s/2)−1) dt       =(1/2)∫_0 ^( 1) (((1−2t+t^2 ))/(1−t^2 ))∗t^((s/2)−1) dt     =(1/2)∫_0 ^( 1) ((t^((s/2)−1) −2t^(s/2) +t^((s/2)+1) )/(1−t^2 ))dt     =^(t^2 =y) (1/2)∫_0 ^( 1) ((y^((s/4)−(1/2)) −2y^(s/4) +y^((s/4)+(1/2)) )/(1−y))((1/2))y^((−1)/2) dy  =(1/4)∫_0 ^( 1) ((y^((s/4)−1) −1+1−y^((s/4)−(1/2)) +y^(s/4) −1+1−y^((s/4)−(1/2)) )/(1−y))dy  =(1/4){(γ−∫_0 ^( 1) ((1−y^((s/4)−1) )/(1−y))dy )+(−γ+∫((1−y^((s/4)−(1/2)) )/(1−y))dy)+(γ−∫_0 ^( 1) ((1−y^(s/4) )/(1−y))dy)+(−γ+∫_0 ^( 1) ((1−y^((s/4)−(1/2)) )/(1−y))dy)}  =(1/4)(−ψ((s/4))+2ψ((s/4)+(1/2))−ψ((s/4)+1))   =(1/4)(−ψ((s/4))+2ψ((s/4)+(1/2))−ψ((s/4))−(4/s))  =(1/2)(ψ((s/4)+(1/2))−ψ((s/4)))−(1/s)      ∴   example:  φ(1)=(1/2)(ψ((3/4))−ψ((1/4)))−1   we know:     ψ(s)−ψ(1−s)=−πcot(πs)      ψ((3/4))−ψ((1/4))=(−π)(−1)=π     φ(1)=(π/2) −1 ....✓

ϕ=0e2x1e2x+1esxdx =2x:=ln(t)x:=ln(t)011t11t+1ts2(12t)dt =12011t1+tts21dt =1201(12t+t2)1t2ts21dt =1201ts212ts2+ts2+11t2dt =t2=y1201ys4122ys4+ys4+121y(12)y12dy =1401ys411+1ys412+ys41+1ys4121ydy =14{(γ011ys411ydy)+(γ+1ys4121ydy)+(γ011ys41ydy)+(γ+011ys4121ydy)} =14(ψ(s4)+2ψ(s4+12)ψ(s4+1)) =14(ψ(s4)+2ψ(s4+12)ψ(s4)4s) =12(ψ(s4+12)ψ(s4))1s example:ϕ(1)=12(ψ(34)ψ(14))1 weknow: ψ(s)ψ(1s)=πcot(πs) ψ(34)ψ(14)=(π)(1)=π ϕ(1)=π21....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com