Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 130508 by Raxreedoroid last updated on 26/Jan/21

lim _(n→∞) Σ_(k=1) ^n ((cos(x∙ln(k)))/( (√k)))=?  where x∈R

$${lim}\:_{{n}\rightarrow\infty} \underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{cos}\left({x}\centerdot{ln}\left({k}\right)\right)}{\:\sqrt{{k}}}=? \\ $$$${where}\:{x}\in\mathbb{R} \\ $$

Answered by Dwaipayan Shikari last updated on 26/Jan/21

Σ_(k=1) ^∞ ((cos(log(k^x )))/( (√k)))=(1/2)Σ_(k=1) ^∞ ((k^(xi) +k^(−xi) )/( (√k)))=(1/2)ζ((1/2)−xi)+(1/2)ζ((1/2)+xi)=0  As ζ((1/2)+Φi)=0   (Φ∈R)

$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{cos}\left({log}\left({k}^{{x}} \right)\right)}{\:\sqrt{{k}}}=\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{k}^{{xi}} +{k}^{−{xi}} }{\:\sqrt{{k}}}=\frac{\mathrm{1}}{\mathrm{2}}\zeta\left(\frac{\mathrm{1}}{\mathrm{2}}−{xi}\right)+\frac{\mathrm{1}}{\mathrm{2}}\zeta\left(\frac{\mathrm{1}}{\mathrm{2}}+{xi}\right)=\mathrm{0} \\ $$$${As}\:\zeta\left(\frac{\mathrm{1}}{\mathrm{2}}+\Phi{i}\right)=\mathrm{0}\:\:\:\left(\Phi\in\mathbb{R}\right) \\ $$

Commented by Raxreedoroid last updated on 26/Jan/21

Isn′t Riemann hypothisis hasn′ been proven yet?

$${Isn}'{t}\:{Riemann}\:{hypothisis}\:{hasn}'\:{been}\:{proven}\:{yet}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com