Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 13059 by sandy_suhendra last updated on 12/May/17

please help for  ∫_(−3π ) ^(   3π) sin^(2009) x dx

pleasehelpfor3π3πsin2009xdx

Answered by mrW1 last updated on 12/May/17

if f(−x)=−f(x), then  ∫_(−a) ^0 f(x)dx=∫_(−a) ^0 f(−x)d(−x)=−∫_0 ^a f(x)dx  ⇒∫_(−a) ^a f(x)dx=∫_(−a) ^0 f(x)dx+∫_0 ^a f(x)dx  =−∫_0 ^a f(x)dx+∫_0 ^a f(x)dx=0    since sin^(2009)  (−x)=−sin^(2009)  x  ⇒∫_(−3π) ^(3π) sin^(2009)  xdx=0

iff(x)=f(x),thena0f(x)dx=a0f(x)d(x)=0af(x)dxaaf(x)dx=a0f(x)dx+0af(x)dx=0af(x)dx+0af(x)dx=0sincesin2009(x)=sin2009x3π3πsin2009xdx=0

Commented by sandy_suhendra last updated on 13/May/17

thank′s for your kindness

thanksforyourkindness

Answered by ajfour last updated on 12/May/17

I=∫_(−3π) ^0 sin^(2009) x dx +∫_0 ^(3π) sin^(2009) x dx  say  I =I_1 +I_2   in the first integral  let   x=−t    ⇒  dx=−dt  when x=−3π ,    t=3π  and when  x=0,  t=0 .  so   I_1 =∫_(3π) ^0 sin^(2009) (−t)(−dt)     =∫_(3π) ^0 sin^(2009) t dt      =−∫_0 ^(3π) sin^(2009) t dt   which is equal to −I_2   I_1 =−I_2   so  I=I_1 +I_2  =0 .

I=3π0sin2009xdx+03πsin2009xdxsayI=I1+I2inthefirstintegralletx=tdx=dtwhenx=3π,t=3πandwhenx=0,t=0.soI1=3π0sin2009(t)(dt)=3π0sin2009tdt=03πsin2009tdtwhichisequaltoI2I1=I2soI=I1+I2=0.

Commented by sandy_suhendra last updated on 13/May/17

thank′s for your kindness

thanksforyourkindness

Terms of Service

Privacy Policy

Contact: info@tinkutara.com