Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 130594 by Lordose last updated on 27/Jan/21

∫_0 ^( ∞) (x^n /(1+x^6 ))dx

$$\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{1}+\mathrm{x}^{\mathrm{6}} }\mathrm{dx} \\ $$

Answered by mindispower last updated on 27/Jan/21

  existe if n∈]−1,5[=∫_0 ^∞ (t^((n−5)/6) /(6(1+t)))dt=(1/6)∫_0 ^∞ (t^(((n+1)/6)−1) /((1+t)^(((n+1)/6)+((−n+5)/6) )  ))  =(1/6)β(((n+1)/6),((5−n)/6))=(1/6).(π/(sin((((n+1)π)/6))))

$$\left.\:\:{existe}\:{if}\:{n}\in\right]−\mathrm{1},\mathrm{5}\left[=\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\frac{{n}−\mathrm{5}}{\mathrm{6}}} }{\mathrm{6}\left(\mathrm{1}+{t}\right)}{dt}=\frac{\mathrm{1}}{\mathrm{6}}\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\frac{{n}+\mathrm{1}}{\mathrm{6}}−\mathrm{1}} }{\left(\mathrm{1}+{t}\right)^{\frac{{n}+\mathrm{1}}{\mathrm{6}}+\frac{−{n}+\mathrm{5}}{\mathrm{6}}\:} \:}\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\beta\left(\frac{{n}+\mathrm{1}}{\mathrm{6}},\frac{\mathrm{5}−{n}}{\mathrm{6}}\right)=\frac{\mathrm{1}}{\mathrm{6}}.\frac{\pi}{{sin}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{6}}\right)} \\ $$

Commented by Lordose last updated on 27/Jan/21

Gratitude

$$\mathrm{Gratitude} \\ $$

Answered by mathmax by abdo last updated on 27/Jan/21

A_n =∫_0 ^∞  (x^n /(1+x^6 ))dx we do the cha7gement  x^6  =t ⇒  A_n =∫_0 ^∞   (((t^(1/6) )^n )/(1+t)).(1/6)t^((1/6)−1)  dt =(1/6)∫_0 ^∞  (t^((n/6)+(1/6)−1) /(1+t))dt  =(1/6)∫_0 ^∞  (t^(((n+1)/6)−1) /(1+t))dt =(1/6)×(π/(sin((((n+1)π)/6))))  here i have used ∫_0 ^∞  (t^(a−1) /(1+t))dt =(π/(sin(πa)))  convergence of A_n    at +∞   (x^n /(x^6 +1))∼(1/x^(6−n) ) and ∫_1 ^∞  (dx/x^(6−n) )cv ⇔6−n>1  5−n>1 ⇒n<5 ⇒n≤4

$$\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{1}+\mathrm{x}^{\mathrm{6}} }\mathrm{dx}\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{cha7gement}\:\:\mathrm{x}^{\mathrm{6}} \:=\mathrm{t}\:\Rightarrow \\ $$$$\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{6}}} \right)^{\mathrm{n}} }{\mathrm{1}+\mathrm{t}}.\frac{\mathrm{1}}{\mathrm{6}}\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{6}}−\mathrm{1}} \:\mathrm{dt}\:=\frac{\mathrm{1}}{\mathrm{6}}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{t}^{\frac{\mathrm{n}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{6}}−\mathrm{1}} }{\mathrm{1}+\mathrm{t}}\mathrm{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{t}^{\frac{\mathrm{n}+\mathrm{1}}{\mathrm{6}}−\mathrm{1}} }{\mathrm{1}+\mathrm{t}}\mathrm{dt}\:=\frac{\mathrm{1}}{\mathrm{6}}×\frac{\pi}{\mathrm{sin}\left(\frac{\left(\mathrm{n}+\mathrm{1}\right)\pi}{\mathrm{6}}\right)} \\ $$$$\mathrm{here}\:\mathrm{i}\:\mathrm{have}\:\mathrm{used}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{t}^{\mathrm{a}−\mathrm{1}} }{\mathrm{1}+\mathrm{t}}\mathrm{dt}\:=\frac{\pi}{\mathrm{sin}\left(\pi\mathrm{a}\right)} \\ $$$$\mathrm{convergence}\:\mathrm{of}\:\mathrm{A}_{\mathrm{n}} \:\:\:\mathrm{at}\:+\infty\:\:\:\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{x}^{\mathrm{6}} +\mathrm{1}}\sim\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{6}−\mathrm{n}} }\:\mathrm{and}\:\int_{\mathrm{1}} ^{\infty} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{6}−\mathrm{n}} }\mathrm{cv}\:\Leftrightarrow\mathrm{6}−\mathrm{n}>\mathrm{1} \\ $$$$\mathrm{5}−\mathrm{n}>\mathrm{1}\:\Rightarrow\mathrm{n}<\mathrm{5}\:\Rightarrow\mathrm{n}\leqslant\mathrm{4} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com