Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 13068 by tawa tawa last updated on 13/May/17

If   y =  (x)^(1/3)      Find  (dy/dx)  from the first principle

$$\mathrm{If}\:\:\:\mathrm{y}\:=\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}}\:\:\:\:\:\mathrm{Find}\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:\:\mathrm{from}\:\mathrm{the}\:\mathrm{first}\:\mathrm{principle} \\ $$

Answered by ajfour last updated on 13/May/17

(dy/dx)=lim_(h→0) (((x+h)^(1/3) −x^(1/3) )/h)      =lim_(h→0) ((x^(1/3) {(1+(h/x))^(1/3) −1})/h)  as h≪x  we have (1+(h/x))^n =1+((nh)/x)  so  (dy/dx)=lim_(h→0) ((x^(1/3) {1+(h/(3x))−1})/h)  ⇒(dy/dx)=(x^(1/3) )lim_(h→0) (((h/3x))/h)            = x^(1/3) ((1/(3x)))           = (1/(3x^(2/3) )) .

$$\frac{{dy}}{{dx}}=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({x}+{h}\right)^{\mathrm{1}/\mathrm{3}} −{x}^{\mathrm{1}/\mathrm{3}} }{{h}} \\ $$$$\:\:\:\:=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{\mathrm{1}/\mathrm{3}} \left\{\left(\mathrm{1}+\frac{{h}}{{x}}\right)^{\mathrm{1}/\mathrm{3}} −\mathrm{1}\right\}}{{h}} \\ $$$${as}\:{h}\ll{x}\:\:{we}\:{have}\:\left(\mathrm{1}+\frac{{h}}{{x}}\right)^{{n}} =\mathrm{1}+\frac{{nh}}{{x}} \\ $$$${so}\:\:\frac{{dy}}{{dx}}=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{\mathrm{1}/\mathrm{3}} \left\{\mathrm{1}+\frac{{h}}{\mathrm{3}{x}}−\mathrm{1}\right\}}{{h}} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}=\left({x}^{\mathrm{1}/\mathrm{3}} \right)\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({h}/\mathrm{3}{x}\right)}{{h}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:{x}^{\mathrm{1}/\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{3}{x}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{3}{x}^{\mathrm{2}/\mathrm{3}} }\:. \\ $$

Commented by tawa tawa last updated on 13/May/17

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by Nayon last updated on 23/May/17

why(1+(h/x))^n =1+((nh)/x)    ?

$${why}\left(\mathrm{1}+\frac{{h}}{{x}}\right)^{{n}} =\mathrm{1}+\frac{{nh}}{{x}}\:\:\:\:? \\ $$

Answered by mrW1 last updated on 13/May/17

Generally for y=f(x)=x^a  (a≠0) we have  f(x+Δx)=f(x+h)=(x+h)^a   ((Δy)/(Δx))=((f(x+Δx)−f(x))/(Δx))=(((x+h)^a −x^a )/h)=x^a (((1+(h/x))^a −1)/h)  (dy/dx)=lim_(h→0)  ((Δy)/(Δx))=x^a ×lim_(h→0) (((1+(h/x))^a −1)/h)  (1+(h/x))^a =1+a((h/x))+((a(a−1))/(2!))((h/x))^2 +((a(a−1)(a−2))/(3!))((h/x))^3 +∙∙∙  (((1+(h/x))^a −1)/h)=(a/x)+((a(a−1)h)/(2!x^2 ))+((a(a−1)(a−2)h^2 )/(3!x^3 ))+∙∙∙  lim_(h→0) (((1+(h/x))^a −1)/h)=(a/x)+0+0+0+∙∙∙=(a/x)  ⇒(dy/dx)=x^a ×(a/x)=ax^(a−1)   for a=(1/3) we get  (dy/dx)=(1/3)x^(−(2/3))

$${Generally}\:{for}\:{y}={f}\left({x}\right)={x}^{{a}} \:\left({a}\neq\mathrm{0}\right)\:{we}\:{have} \\ $$$${f}\left({x}+\Delta{x}\right)={f}\left({x}+{h}\right)=\left({x}+{h}\right)^{{a}} \\ $$$$\frac{\Delta{y}}{\Delta{x}}=\frac{{f}\left({x}+\Delta{x}\right)−{f}\left({x}\right)}{\Delta{x}}=\frac{\left({x}+{h}\right)^{{a}} −{x}^{{a}} }{{h}}={x}^{{a}} \frac{\left(\mathrm{1}+\frac{{h}}{{x}}\right)^{{a}} −\mathrm{1}}{{h}} \\ $$$$\frac{{dy}}{{dx}}=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\Delta{y}}{\Delta{x}}={x}^{{a}} ×\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{1}+\frac{{h}}{{x}}\right)^{{a}} −\mathrm{1}}{{h}} \\ $$$$\left(\mathrm{1}+\frac{{h}}{{x}}\right)^{{a}} =\mathrm{1}+{a}\left(\frac{{h}}{{x}}\right)+\frac{{a}\left({a}−\mathrm{1}\right)}{\mathrm{2}!}\left(\frac{{h}}{{x}}\right)^{\mathrm{2}} +\frac{{a}\left({a}−\mathrm{1}\right)\left({a}−\mathrm{2}\right)}{\mathrm{3}!}\left(\frac{{h}}{{x}}\right)^{\mathrm{3}} +\centerdot\centerdot\centerdot \\ $$$$\frac{\left(\mathrm{1}+\frac{{h}}{{x}}\right)^{{a}} −\mathrm{1}}{{h}}=\frac{{a}}{{x}}+\frac{{a}\left({a}−\mathrm{1}\right){h}}{\mathrm{2}!{x}^{\mathrm{2}} }+\frac{{a}\left({a}−\mathrm{1}\right)\left({a}−\mathrm{2}\right){h}^{\mathrm{2}} }{\mathrm{3}!{x}^{\mathrm{3}} }+\centerdot\centerdot\centerdot \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{1}+\frac{{h}}{{x}}\right)^{{a}} −\mathrm{1}}{{h}}=\frac{{a}}{{x}}+\mathrm{0}+\mathrm{0}+\mathrm{0}+\centerdot\centerdot\centerdot=\frac{{a}}{{x}} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}={x}^{{a}} ×\frac{{a}}{{x}}={ax}^{{a}−\mathrm{1}} \\ $$$${for}\:{a}=\frac{\mathrm{1}}{\mathrm{3}}\:{we}\:{get} \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{1}}{\mathrm{3}}{x}^{−\frac{\mathrm{2}}{\mathrm{3}}} \\ $$

Commented by ajfour last updated on 13/May/17

too good !

$${too}\:{good}\:!\: \\ $$

Commented by tawa tawa last updated on 13/May/17

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com