Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 130693 by mnjuly1970 last updated on 28/Jan/21

              ... nice   calculus...     evaluate ::         =∫_0 ^( ∞) ((sin(x))/(e^x −1)) dx =??                  ....................

...nicecalculus...evaluate::=0sin(x)ex1dx=??....................

Answered by mnjuly1970 last updated on 28/Jan/21

      ∫_0 ^( ∞) ((sin(x))/(e^x −1))dx=(1/(2i))∫_0 ^( ∞) ((e^(ix) −e^(−ix) )/(e^x −1))dx  =(1/(2i))∫_0 ^( ∞) ((e^(ix−x) −e^(−ix−x) )/(1−e^(−x) )) dx  =(1/(2i))∫_0 ^( ∞) {Σ_(n=0) ^∞ e^(ix−x−nx) −e^(−ix−x−nx) }dx  =(1/(2i))Σ_(n=0) ^∞ {(e^(x(i−1−n)) /(i−n−1))+(e^(−x(i+1+n)) /(i+1+n))}_0 ^∞   =((−1)/(2i))Σ_(n=0) ^∞ {(1/(i−(n+1)))+(1/(i+(n+1)))}  =((−1)/(2i))Σ_(n=1) ^∞ (1/(i−n))+(1/(i+n))=((−1)/(2i))Σ_(n=1) ^∞ ((2i)/(i^2 −n^2 ))  =Σ_(n=1) ^∞ (1/(n^2 +1)) =^(⟨upsilon  function⟩)   ((πcoth(π) −1)/3)

0sin(x)ex1dx=12i0eixeixex1dx=12i0eixxeixx1exdx=12i0{n=0eixxnxeixxnx}dx=12in=0{ex(i1n)in1+ex(i+1+n)i+1+n}0=12in=0{1i(n+1)+1i+(n+1)}=12in=11in+1i+n=12in=12ii2n2=n=11n2+1=upsilonfunctionπcoth(π)13

Answered by Dwaipayan Shikari last updated on 28/Jan/21

(1/(2i))Σ_(n=1) ^∞ ∫_0 ^∞ e^(−nx+ix) −e^(−nx−ix) dx  =Σ_(n=1) ^∞ (1/(n^2 +1))=(1/2)(πcoth(π)−1)

12in=10enx+ixenxixdx=n=11n2+1=12(πcoth(π)1)

Answered by mathmax by abdo last updated on 28/Jan/21

Φ=∫_0 ^∞  ((sinx)/(e^x −1))dx ⇒Φ=∫_0 ^∞  ((e^(−x) sinx)/(1−e^(−x) ))dx  =∫_0 ^∞ e^(−x) sinxΣ_(n=0) ^∞  e^(−nx) dx  =Σ_(n=0) ^∞  ∫_0 ^∞ e^(−(n+1)x) sinx dx =Σ_(n=0) ^∞  u_n   u_n =Im(∫_0 ^∞  e^(−(n+1)x) e^(ix) dx)but  ∫_0 ^∞  e^((−(n+1)+i)x) dx =(1/(−(n+1)+i))e^(−(n+1)+i)x) ]_0 ^∞   =(1/(n+1−i)) =((n+1+i)/((n+1)^2  +1)) ⇒u_n =(1/((n+1)^2  +1)) ⇒Φ=Σ_(n=0) ^∞ (1/((n+1)^2 +1))  =Σ_(n=1) ^∞  (1/(n^2  +1)) ,the value of this serie is known see the platform

Φ=0sinxex1dxΦ=0exsinx1exdx=0exsinxn=0enxdx=n=00e(n+1)xsinxdx=n=0unun=Im(0e(n+1)xeixdx)but0e((n+1)+i)xdx=1(n+1)+ie(n+1)+i)x]0=1n+1i=n+1+i(n+1)2+1un=1(n+1)2+1Φ=n=01(n+1)2+1=n=11n2+1,thevalueofthisserieisknownseetheplatform

Terms of Service

Privacy Policy

Contact: info@tinkutara.com