Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 130738 by bemath last updated on 28/Jan/21

∫_( 1) ^( cosh x) (√(t^2 −1)) dt = ?

$$\int_{\:\mathrm{1}} ^{\:\mathrm{cosh}\:\mathrm{x}} \sqrt{\mathrm{t}^{\mathrm{2}} −\mathrm{1}}\:\mathrm{dt}\:=\:?\: \\ $$

Answered by MJS_new last updated on 28/Jan/21

∫(√(t^2 −1))dt=       [t=cosh u ⇔ u=cosh^(−1)  t → dt=sinh u du]  =∫sinh^2  u du=−(1/2)(u−sinh u cosh u)=  =−(1/2)(cosh^(−1)  t −t(√(t^2 −1)))+C  ⇒ answer is −((x−sinh x cosh x)/2)

$$\int\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}{dt}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{cosh}\:{u}\:\Leftrightarrow\:{u}=\mathrm{cosh}^{−\mathrm{1}} \:{t}\:\rightarrow\:{dt}=\mathrm{sinh}\:{u}\:{du}\right] \\ $$$$=\int\mathrm{sinh}^{\mathrm{2}} \:{u}\:{du}=−\frac{\mathrm{1}}{\mathrm{2}}\left({u}−\mathrm{sinh}\:{u}\:\mathrm{cosh}\:{u}\right)= \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cosh}^{−\mathrm{1}} \:{t}\:−{t}\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\right)+{C} \\ $$$$\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:−\frac{{x}−\mathrm{sinh}\:{x}\:\mathrm{cosh}\:{x}}{\mathrm{2}} \\ $$

Commented by bemath last updated on 29/Jan/21

great

$$\mathrm{great} \\ $$

Answered by mathmax by abdo last updated on 28/Jan/21

f(x)=∫_1 ^(ch(x)) (√(t^2 −1))dt we do the changement t=chz ⇒  f(x)=∫_0 ^x shz shz dz =∫_0 ^x ((ch(2z)−1)/2)dz  =(1/4)sh(2z)]_0 ^x −(x/2) =(1/4)sh(2x)−(x/2) .

$$\mathrm{f}\left(\mathrm{x}\right)=\int_{\mathrm{1}} ^{\mathrm{ch}\left(\mathrm{x}\right)} \sqrt{\mathrm{t}^{\mathrm{2}} −\mathrm{1}}\mathrm{dt}\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\mathrm{t}=\mathrm{chz}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{\mathrm{x}} \mathrm{shz}\:\mathrm{shz}\:\mathrm{dz}\:=\int_{\mathrm{0}} ^{\mathrm{x}} \frac{\mathrm{ch}\left(\mathrm{2z}\right)−\mathrm{1}}{\mathrm{2}}\mathrm{dz} \\ $$$$\left.=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sh}\left(\mathrm{2z}\right)\right]_{\mathrm{0}} ^{\mathrm{x}} −\frac{\mathrm{x}}{\mathrm{2}}\:=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sh}\left(\mathrm{2x}\right)−\frac{\mathrm{x}}{\mathrm{2}}\:. \\ $$

Commented by bemath last updated on 29/Jan/21

nice

$$\mathrm{nice} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com