Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 130759 by mnjuly1970 last updated on 28/Jan/21

                ...nice  calculus ...   find : φ =∫_0 ^( ∞) (x^2 ln(1+e^x )−x^3 )dx

...nicecalculus...find:ϕ=0(x2ln(1+ex)x3)dx

Answered by mnjuly1970 last updated on 28/Jan/21

ans:    φ=∫_0 ^( ∞) x^2 ln(((1+e^x )/e^x ))dx     =∫_0 ^( ∞) x^2 ln(1+e^(−x) )dx      =Σ_(n=1) ^∞ (−1)^((n−1)) (1/n)∫_0 ^( ∞) x^2 e^(−nx) dx       =^(nx=y) Σ_(n=1) ^∞ [(−1)^((n−1)) (1/n^4 )∫_0 ^( ∞) y^2 e^(−y) dy]         =Γ(3)Σ_(n=1) ^∞ (((−1)^(n−1) )/n^4 )=2[(1/1^4 )−(1/2^4 )+(1/3^4 )−(1/4^4 )+..]    =2 (ζ(4)−(2/2^4 )(ζ(4)))=2((π^4 /(90))−(π^4 /(8∗90)))    =(π^4 /(45))(1−(1/8))=(7/8)∗(π^4 /(45))=((7π^4 )/(360)) =...       correct  or  no ???

ans:ϕ=0x2ln(1+exex)dx=0x2ln(1+ex)dx=n=1(1)(n1)1n0x2enxdx=nx=yn=1[(1)(n1)1n40y2eydy]=Γ(3)n=1(1)n1n4=2[114124+134144+..]=2(ζ(4)224(ζ(4)))=2(π490π4890)=π445(118)=78π445=7π4360=...correctorno???

Answered by Dwaipayan Shikari last updated on 28/Jan/21

∫_0 ^∞ x^2 log(1+e^(−x) )dx  =Σ_(n=1) ^∞ (((−1)^(n+1) )/n)∫_0 ^∞ e^(−nx) x^2 dx=2Σ_(n=1) ^∞ (((−1)^(n+1) )/n^4 )=(π^4 /(45))(1−(1/2^3 ))=((7π^4 )/(360))

0x2log(1+ex)dx=n=1(1)n+1n0enxx2dx=2n=1(1)n+1n4=π445(1123)=7π4360

Commented by mnjuly1970 last updated on 28/Jan/21

  nice very nice::    η(s)=(1−2^(1−s) )ζ(s)      η(4)=(1−(1/8))ζ(4)=(7/8)∗(π^4 /(90))                =((7π^4 )/(720))  ⇒ ans :=2(((7π^4 )/(720)))=((7π^4 )/(360))

niceverynice::η(s)=(121s)ζ(s)η(4)=(118)ζ(4)=78π490=7π4720ans:=2(7π4720)=7π4360

Answered by Lordose last updated on 28/Jan/21

  Ω = ∫_0 ^( ∞) (x^2 ln(1+e^x )−x^3 )dx = ∫_0 ^( ∞) x^2 (ln(1+e^(−x) ))dx  Ω =^(u=e^(−x) ) ∫_0 ^( 1) (1/u)(−lnu)^2 ln(1+u)du = ∫_0 ^( 1) u^(−1) ln(1+u)ln^2 (u)du  Ω = Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^( 1) u^(n−1) ln^2 (u)du  Ω(n) = ∫_0 ^( 1) u^n du = (u^(n+1) /(n+1)) = (1/(n+1))  Ω′(n) = ∫_0 ^( 1) u^n ln(u)du = −(1/((n+1)^2 ))  Ω′′(n) = ∫_0 ^( 1) u^n ln^2 (u)du = (1/((n+1)^3 ))  Ω^(′′) (n−1) = (1/n^3 )  Ω = Σ_(n=1) ^∞ (((−1)^(n−1) )/n^4 ) = ((7π^4 )/(720))

Ω=0(x2ln(1+ex)x3)dx=0x2(ln(1+ex))dxΩ=u=ex011u(lnu)2ln(1+u)du=01u1ln(1+u)ln2(u)duΩ=n=1(1)n1n01un1ln2(u)duΩ(n)=01undu=un+1n+1=1n+1Ω(n)=01unln(u)du=1(n+1)2Ω(n)=01unln2(u)du=1(n+1)3Ω(n1)=1n3Ω=n=1(1)n1n4=7π4720

Terms of Service

Privacy Policy

Contact: info@tinkutara.com