Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 130781 by EDWIN88 last updated on 28/Jan/21

∫_0 ^( 1)  ((ln (1+x+x^2 +x^3 +...+x^n ))/x) dx?

01ln(1+x+x2+x3+...+xn)xdx?

Answered by mathmax by abdo last updated on 29/Jan/21

A_n =∫_0 ^1  ((ln(1+x+x^2 +....+x^n ))/x)dx ⇒  A_n =∫_0 ^1 ((ln(((1−x^(n+1) )/(1−x))))/x)dx =∫_0 ^1  ((ln(1−x^(n+1) ))/x)dx−∫_0 ^1  ((ln(1−x))/x)dx  ln^′ (1−x)=−(1/(1−x))=−Σ_(n=0) ^∞  x^n  ⇒ln(1−x)=−Σ_(n=0) ^∞  (x^(n+1) /(n+1)) +c(c=0)  =−Σ_(n=1) ^∞  (x^n /n) ⇒∫_0 ^1  ((ln(1−x))/x)dx =−Σ_(n=1) ^∞  (1/n)∫_0 ^1  x^(n−1) dx=−Σ_(n=1) ^∞  (1/n^2 )  =−(π^2 /6) and  ln(1−x^(n+1) )=−Σ_(p=1) ^∞  (((x^(n+1) )^p )/p) =−Σ_(p=1) ^∞ (x^((n+1)p) /p) ⇒  ∫_0 ^1  ((ln(1−x^(n+1) ))/x)dx =−Σ_(p=1) ^∞  (1/p) ∫_0 ^1  x^((n+1)p−1) dx  =−Σ_(p=1) ^∞ (1/(p(n+1)p)) =−Σ_(p=1) ^∞ (1/((n+1)p^2 )) =−(π^2 /(6(n+1))) ⇒  A_n =−(1/(n+1)).(π^2 /6)+(π^2 /6) =(π^2 /6)(1−(1/(n+1))) =((nπ^2 )/(6(n+1)))

An=01ln(1+x+x2+....+xn)xdxAn=01ln(1xn+11x)xdx=01ln(1xn+1)xdx01ln(1x)xdxln(1x)=11x=n=0xnln(1x)=n=0xn+1n+1+c(c=0)=n=1xnn01ln(1x)xdx=n=11n01xn1dx=n=11n2=π26andln(1xn+1)=p=1(xn+1)pp=p=1x(n+1)pp01ln(1xn+1)xdx=p=11p01x(n+1)p1dx=p=11p(n+1)p=p=11(n+1)p2=π26(n+1)An=1n+1.π26+π26=π26(11n+1)=nπ26(n+1)

Commented by mathmax by abdo last updated on 29/Jan/21

remark     lim_(n→+∞)  A_n =(π^2 /6)

remarklimn+An=π26

Commented by Lordose last updated on 29/Jan/21

Very nice sir

Verynicesir

Answered by mnjuly1970 last updated on 29/Jan/21

 φ_n =∫_0 ^( 1) (1/x)ln(1−x^(n+1) )+li_2 (1)        =−Σ_(m≥1) (1/m)∫_0 ^( 1) (x^(nm+m) /x)dx+(π^2 /6)       =−Σ_(m≥1) (1/(m^2 (n+1)))+(π^2 /6)       =−(1/(n+1)) ζ(2)+(π^2 /6)          φ_n =−(π^2 /(6(n+1)))+(π^2 /6)      if   n →∞  then   φ_n →(π^2 /6)

ϕn=011xln(1xn+1)+li2(1)=m11m01xnm+mxdx+π26=m11m2(n+1)+π26=1n+1ζ(2)+π26ϕn=π26(n+1)+π26ifnthenϕnπ26

Answered by Dwaipayan Shikari last updated on 29/Jan/21

∫_0 ^1 ((log(1+x+x+x^3 +..+x^n ))/x)dx  =∫_0 ^1 ((log(1−x^(n+1) ))/x)−((log(1−x))/x)dx  =−Σ_(k=1) ^∞ ∫_0 ^1 (x^((n+1)k−1) /k)+Σ_(k=1) ^∞ ∫_0 ^1 (x^(k−1) /k)dx  =−Σ_(k=1) ^∞ (1/((n+1)k^2 ))+(π^2 /6)=(π^2 /6)((n/(n+1)))

01log(1+x+x+x3+..+xn)xdx=01log(1xn+1)xlog(1x)xdx=k=101x(n+1)k1k+k=101xk1kdx=k=11(n+1)k2+π26=π26(nn+1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com