All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 130809 by bemath last updated on 29/Jan/21
∫tanxsinxdx?
Answered by EDWIN88 last updated on 29/Jan/21
letsinx=u⇒sinx=u2tanx=u21−u4dx=2udu1−u4I=∫u31−u4(2u1−u4)duI=∫2u41−u4du=∫(−2+21−u4)duI=−2u+2∫du(1+u2)(1−u2)I=−2u+∫(11−u2+1u2+1)duI=−2u+tan−1(u)+12∫(11−u+11+u)duI=−2u+tan−1(u)+12ln∣1−u2∣+cI=−2sinx+tan−1(sinx)+12ln∣1−sinx∣+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com