Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 13081 by 433 last updated on 13/May/17

 { ((x+y+z=[1]_5 )),((xy=[2]_5 )),((yz=[1]_5 )) :}  Solve system on Z_5

{x+y+z=[1]5xy=[2]5yz=[1]5SolvesystemonZ5

Answered by RasheedSindhi last updated on 14/May/17

^(Rasheed Soomro)   x+y+z+xy+yz=[1]_5 +[2]_5 + [1]_5   y+x+z+y(x+z)=[4]_5   y+(x+z)(1+y)=[4]_5   1+y+(x+z)(1+y)=[4]_5 +1  (1+y)(1+x+z)=[4]_5 +[1]_5 =[0]_5   (1+y)=[0]_5 or(1+x+z)=[0]_5   y=[−1]_5  or x+z=[−1]_5   y=[4]_5  or x+z=[4]_5   yz=[1]_5   [4]z=[16]_5   z= [((16)/4)]_5 =[4]_5   xy=[2]_5 ⇒x×[4]_5 =[2]_5   x×[4]_5 =[12]  x=[((12)/4)]_5 =[3]_5   x=[3]_5 ,y=z=[4]_5   For example  x=3,y=4,z=4

RasheedSoomrox+y+z+xy+yz=[1]5+[2]5+[1]5y+x+z+y(x+z)=[4]5y+(x+z)(1+y)=[4]51+y+(x+z)(1+y)=[4]5+1(1+y)(1+x+z)=[4]5+[1]5=[0]5(1+y)=[0]5or(1+x+z)=[0]5y=[1]5orx+z=[1]5y=[4]5orx+z=[4]5yz=[1]5[4]z=[16]5z=[164]5=[4]5xy=[2]5x×[4]5=[2]5x×[4]5=[12]x=[124]5=[3]5x=[3]5,y=z=[4]5Forexamplex=3,y=4,z=4

Commented by 433 last updated on 14/May/17

You forgot x+z=[4]_5  but thank you

Youforgotx+z=[4]5butthankyou

Commented by RasheedSindhi last updated on 14/May/17

From above answer:     { ((x+z=[4]_5 .........(i))),((xy=[2]_5 .............(ii))),((yz=[1]_5 ..............(iii))) :}  (i)⇒x=[4]_5 −z  (ii)⇒([4]_5 −z)y=[2]_5   [4]_5 y−yz=[2]_5   [4]_5 y−[1]_5 =[2]_5      (∵ yz=[1]_5   (iii) )  [4]_5 y=[2]_5 +[1]_5 =[3]_5 =[8]_5   y=[(8/4)]_5 =[2]_5 ⇒y=[2]_5   (ii)⇒x([2]_5 )=[2]_5           ⇒x=[1]_5   (i)⇒z=[4]_5 −x=[4]_5 −[1]_5 =[3]_5               z=[3]_5   x=[1]_5  , y=[2]_5  , z=[3]_5   For example:  x=1 , y=2 , z=3

Fromaboveanswer:{x+z=[4]5.........(i)xy=[2]5.............(ii)yz=[1]5..............(iii)(i)x=[4]5z(ii)([4]5z)y=[2]5[4]5yyz=[2]5[4]5y[1]5=[2]5(yz=[1]5(iii))[4]5y=[2]5+[1]5=[3]5=[8]5y=[84]5=[2]5y=[2]5(ii)x([2]5)=[2]5x=[1]5(i)z=[4]5x=[4]5[1]5=[3]5z=[3]5x=[1]5,y=[2]5,z=[3]5Forexample:x=1,y=2,z=3

Commented by mrW1 last updated on 14/May/17

Great job!

Greatjob!

Commented by RasheedSindhi last updated on 16/May/17

THαnX  Sir!

THαnXSir!

Answered by RasheedSindhi last updated on 14/May/17

AnOther Way_(−)         ^(Rasheed Soomro)   x+y+z≡1(mod 5).......I  xy≡2(mod 5)..............II  yz≡1(mod 5)..............III  I+II+III⇒       x+y+z+xy+yz≡4(mod 5)    y+(x+z)+y(x+z)≡4(mod 5)  y+(x+z)(1+y)≡4(mod 5)  1+y+(x+z)(1+y)≡4+1(mod 5)  (1+y)(1+x+z)≡0(mod 5)  1+y≡0 ∨ 1+x+z≡0 (mod 5)  y≡−1 ∨ x+z≡−1 (mod 5)  y≡4 ∨ x+z≡4 (mod 5).....A   { ((y≡4(mod 5)..............(i))),((xy≡2≡12(mod 5)......(ii))) :}  (ii)/(i)⇒x≡3(mod 5)   { ((y≡4(mod 5)..............(iii))),((yz≡1≡16(mod 5).......(iv))) :}  (iv)/(iii)⇒z≡4(mod 5)    x,y,z≡3,4,4(mod 5)  For example:  x=3,y=4,z=4  2nd part  x+z≡4(mod 5)  [From A]  x≡4−z(mod 5).............(v)  xy≡2(mod 5)  [From II]..(vi)  From (v) &(vi):  (4−z)y≡2(mod 5)  4y−yz≡2(mof 5)   But yz≡1(mod 5) [From III]  ∴  4y−1≡2(mod 5)        4y≡3≡8(mod 5)         y≡2(mod 5)  II⇒x(2)≡2(mod 5)            x≡1(mod 5)  From I : z≡4−x(mod 5)                 z≡4−1(mod 5)                 z≡3(mod 5)  x,y,z≡1,2,3(mod 5)

AnOtherWayRasheedSoomrox+y+z1(mod5).......Ixy2(mod5)..............IIyz1(mod5)..............IIII+II+IIIx+y+z+xy+yz4(mod5)y+(x+z)+y(x+z)4(mod5)y+(x+z)(1+y)4(mod5)1+y+(x+z)(1+y)4+1(mod5)(1+y)(1+x+z)0(mod5)1+y01+x+z0(mod5)y1x+z1(mod5)y4x+z4(mod5).....A{y4(mod5)..............(i)xy212(mod5)......(ii)(ii)/(i)x3(mod5){y4(mod5)..............(iii)yz116(mod5).......(iv)(iv)/(iii)z4(mod5)x,y,z3,4,4(mod5)Forexample:x=3,y=4,z=42ndpartx+z4(mod5)[FromA]x4z(mod5).............(v)xy2(mod5)[FromII]..(vi)From(v)&(vi):(4z)y2(mod5)4yyz2(mof5)Butyz1(mod5)[FromIII]4y12(mod5)4y38(mod5)y2(mod5)IIx(2)2(mod5)x1(mod5)FromI:z4x(mod5)z41(mod5)z3(mod5)x,y,z1,2,3(mod5)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com