Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 130849 by TITA last updated on 29/Jan/21

Commented by Ñï= last updated on 29/Jan/21

Answered by EDWIN88 last updated on 30/Jan/21

−2y=−2acos 2x−2bsin 2x        y′=−2asin 2x+2bcos 2x       y′′=−4acos 2x−4bsin 2x  +   (−6a+2b)cos 2x+(−2a−6b)sin 2x= 6cos 2x+0sin 2x   { ((−2a−6b=0⇒a=−3b)),((−6a+2b=6; b=(3/(10)) ∧ a=−(9/(10)))) :}  particular solution:  y_p = −(9/(10))cos 2x + (3/(10))sin 2x

2y=2acos2x2bsin2xy=2asin2x+2bcos2xy=4acos2x4bsin2x+(6a+2b)cos2x+(2a6b)sin2x=6cos2x+0sin2x{2a6b=0a=3b6a+2b=6;b=310a=910particularsolution:yp=910cos2x+310sin2x

Answered by mathmax by abdo last updated on 30/Jan/21

xy^2 y^′ −2y^(3 ) =x  let z=y^3  ⇒z^′  =3y^2 y^′   e⇒x((z^′ /3))−2z=x ⇒xz^′ −6z=3x  h→xz^′ −6z=0 ⇒xz^′  =6z ⇒(z^′ /z)=(6/x) ⇒lnz=6ln∣x∣ +c ⇒z=k x^6   mvc method →z^′  =k^′  x^6  +6k x^5   e→k^′ x^7  +6kx^6 −6kx^6  =3x ⇒k^′  =(3/x^6 ) ⇒k =3∫ (dx/x^6 ) =3∫ x^(−6) dx  =3×(1/(−5))x^(−5)  +λ =−(3/(5x^5 ))+λ ⇒z(x)=(−(3/(5x^5 ))+λ)x^6   =−(3/5)x+λx^6    ⇒y =^3 (√(z(x)))=^3 (√(λx^6 −(3/5)x))

xy2y2y3=xletz=y3z=3y2yex(z3)2z=xxz6z=3xhxz6z=0xz=6zzz=6xlnz=6lnx+cz=kx6mvcmethodz=kx6+6kx5ekx7+6kx66kx6=3xk=3x6k=3dxx6=3x6dx=3×15x5+λ=35x5+λz(x)=(35x5+λ)x6=35x+λx6y=3z(x)=3λx635x

Answered by mathmax by abdo last updated on 30/Jan/21

2) y^(′′)  +y−2=6cos(2x)  h→r^2  +r−2=0 →Δ=9 ⇒r_1 =((−1+3)/2)=1 and r_2 =((−1−3)/2)=−2 ⇒  y_h =ae^x  +be^(−2x)  =au_1  +bu_2   W(u_1 ,u_2 )= determinant (((e^x            e^(−2x) )),((e^x          −2e^(−2x) )))=−2e^(−x) −e^(−x)  =−3e^(−x)  ≠0  W_1 = determinant (((o          e^(−2x) )),((6cos(2x)     −2e^(−2x) )))=−6e^(−2x)  cos(2x)  W_2 = determinant (((e^(−2x)           0)),((−2e^(−x)      6cos(2x))))=6e^(−2x) cos(2x)  V_1 =∫ (W_1 /W)dx =−6∫  ((e^(−2x) cos(2x))/(−3e^(−x) ))dx =2∫ e^(−x)  cos(2x)dx  =2 Re(∫ e^(−x+2ix) dx) and ∫ e^((−1+2i)x) dx =(1/(−1+2i))e^((−1+2i)x)   =−(1/(1−2i))e^(−x) (cos(2x)+isin(2x)) =−(e^(−x) /5)(1+2i)(cos(2x)+isin(2x))  =−(e^(−x) /5){cos(2x)+isin(2x)+2icos(2x)−2sin(2x)} ⇒  v_1 =−(2/5)e^(−x) (cos(2x)−2sin(2x))  V_2 =∫ (W_2 /W)dx =∫((6e^(−2x)  cos(2x)dx)/(−3e^(−x) ))dx  =−2∫  e^(−x)  cos(2x)dx =(2/5)e^(−x) (cos(2x)−2sin(2x)) ⇒  y_p =u_1 v_1  +u_2 v_2 =−(2/5)(cos(2x)−2sin(2x))+(2/5)e^(−3x) (cos(2x)−2sin(2x))  =(−(2/5)+(2/5)e^(−3x) )cos(2x)+((4/5)−(4/5)e^(−3x) )sin(2x)  general solution is  y =y_h +y_p =ae^x  +be^(−2x)  +(−(2/5)+(2/5)e^(−3x) )cos(2x)  +(4/5)(1−e^(−3x) )sin(2x)

2)y+y2=6cos(2x)hr2+r2=0Δ=9r1=1+32=1andr2=132=2yh=aex+be2x=au1+bu2W(u1,u2)=|exe2xex2e2x|=2exex=3ex0W1=|oe2x6cos(2x)2e2x|=6e2xcos(2x)W2=|e2x02ex6cos(2x)|=6e2xcos(2x)V1=W1Wdx=6e2xcos(2x)3exdx=2excos(2x)dx=2Re(ex+2ixdx)ande(1+2i)xdx=11+2ie(1+2i)x=112iex(cos(2x)+isin(2x))=ex5(1+2i)(cos(2x)+isin(2x))=ex5{cos(2x)+isin(2x)+2icos(2x)2sin(2x)}v1=25ex(cos(2x)2sin(2x))V2=W2Wdx=6e2xcos(2x)dx3exdx=2excos(2x)dx=25ex(cos(2x)2sin(2x))yp=u1v1+u2v2=25(cos(2x)2sin(2x))+25e3x(cos(2x)2sin(2x))=(25+25e3x)cos(2x)+(4545e3x)sin(2x)generalsolutionisy=yh+yp=aex+be2x+(25+25e3x)cos(2x)+45(1e3x)sin(2x)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com