Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 130854 by mathlove last updated on 29/Jan/21

lim_(x→2) ((x^x ∙x!−4(3x−4)!)/(3x!−6))

$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{{x}^{{x}} \centerdot{x}!−\mathrm{4}\left(\mathrm{3}{x}−\mathrm{4}\right)!}{\mathrm{3}{x}!−\mathrm{6}} \\ $$

Answered by Dwaipayan Shikari last updated on 29/Jan/21

lim_(x→2) ((x^x (1+logx)x!+x^x x!ψ(x+1)−12(3x−4)!ψ(3x−3))/(3x!ψ(x+1)))  =((4(1+log(2))+4((3/2)−γ)−24((3/2)−γ))/(9−6γ))  =((4log(2)−26+20γ)/(9−6γ))

$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{{x}^{{x}} \left(\mathrm{1}+{logx}\right){x}!+{x}^{{x}} {x}!\psi\left({x}+\mathrm{1}\right)−\mathrm{12}\left(\mathrm{3}{x}−\mathrm{4}\right)!\psi\left(\mathrm{3}{x}−\mathrm{3}\right)}{\mathrm{3}{x}!\psi\left({x}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{4}\left(\mathrm{1}+{log}\left(\mathrm{2}\right)\right)+\mathrm{4}\left(\frac{\mathrm{3}}{\mathrm{2}}−\gamma\right)−\mathrm{24}\left(\frac{\mathrm{3}}{\mathrm{2}}−\gamma\right)}{\mathrm{9}−\mathrm{6}\gamma} \\ $$$$=\frac{\mathrm{4}{log}\left(\mathrm{2}\right)−\mathrm{26}+\mathrm{20}\gamma}{\mathrm{9}−\mathrm{6}\gamma} \\ $$

Commented by mathlove last updated on 29/Jan/21

ψ and γ  is any function

$$\psi\:{and}\:\gamma\:\:{is}\:{any}\:{function} \\ $$

Commented by Dwaipayan Shikari last updated on 29/Jan/21

((Γ′(x))/(Γ(x)))=ψ(x)  (Digamma function)  ψ(x)=−γ+Σ_(n=0) ^∞ (1/(n+1))−(1/(n+x))  Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt=(x−1)!  γ=Eulerian Constant =lim_(n→∞) Σ_(k=1) ^∞ (1/k)−log(n)

$$\frac{\Gamma'\left({x}\right)}{\Gamma\left({x}\right)}=\psi\left({x}\right)\:\:\left({Digamma}\:{function}\right) \\ $$$$\psi\left({x}\right)=−\gamma+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}+\mathrm{1}}−\frac{\mathrm{1}}{{n}+{x}} \\ $$$$\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt}=\left({x}−\mathrm{1}\right)! \\ $$$$\gamma=\mathcal{E}{ulerian}\:{Constant}\:=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}}−{log}\left({n}\right) \\ $$

Commented by mathlove last updated on 29/Jan/21

thanks  bro

$${thanks}\:\:{bro} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com