Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 130889 by mnjuly1970 last updated on 30/Jan/21

              ...   advanced  mathematcs  ...   prove that::      Σ_(n=1) ^∞ (((−1)^n )/(1+n^2 )) =((csch(π)−1)/2)

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\:\:{advanced}\:\:{mathematcs}\:\:... \\ $$$$\:{prove}\:{that}:: \\ $$$$\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{1}+{n}^{\mathrm{2}} }\:=\frac{{csch}\left(\pi\right)−\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$

Answered by mindispower last updated on 30/Jan/21

let f(z)=(π/(sin(πz)(1+z^2 ))),pol =Z∪{i,−i}  ∫_C f(z)dz=0  Res(f,k)=(1/((−1)^k (1+k^2 ))),∀k∈Z  Res(f,i)=(π/(2isin(iπ)))=(π/(−2sh(π)))  Res(f,−i)=(π/(−sh(π)))  ⇒Σ_(n∈Z) (((−1)^n )/(1+n^2 ))−(π/(sh(π)))=0  ⇒2Σ_(n≥1) (((−1)^n )/(1+n^2 ))+1−(π/(sh(π)))=0  Σ_(n≥1) (((−1)^n )/(1+n^2 ))=(π/(2sh(π)))−(1/2)=((πscch(π)−1)/2)

$${let}\:{f}\left({z}\right)=\frac{\pi}{{sin}\left(\pi{z}\right)\left(\mathrm{1}+{z}^{\mathrm{2}} \right)},{pol}\:=\mathbb{Z}\cup\left\{{i},−{i}\right\} \\ $$$$\int_{{C}} {f}\left({z}\right){dz}=\mathrm{0} \\ $$$${Res}\left({f},{k}\right)=\frac{\mathrm{1}}{\left(−\mathrm{1}\right)^{{k}} \left(\mathrm{1}+{k}^{\mathrm{2}} \right)},\forall{k}\in\mathbb{Z} \\ $$$${Res}\left({f},{i}\right)=\frac{\pi}{\mathrm{2}{isin}\left({i}\pi\right)}=\frac{\pi}{−\mathrm{2}{sh}\left(\pi\right)} \\ $$$${Res}\left({f},−{i}\right)=\frac{\pi}{−{sh}\left(\pi\right)} \\ $$$$\Rightarrow\underset{{n}\in\mathbb{Z}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{1}+{n}^{\mathrm{2}} }−\frac{\pi}{{sh}\left(\pi\right)}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{1}+{n}^{\mathrm{2}} }+\mathrm{1}−\frac{\pi}{{sh}\left(\pi\right)}=\mathrm{0} \\ $$$$\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{1}+{n}^{\mathrm{2}} }=\frac{\pi}{\mathrm{2}{sh}\left(\pi\right)}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\pi{scch}\left(\pi\right)−\mathrm{1}}{\mathrm{2}} \\ $$

Commented by mnjuly1970 last updated on 30/Jan/21

tayeballah mr power..  thank you...

$${tayeballah}\:{mr}\:{power}.. \\ $$$${thank}\:{you}... \\ $$

Commented by mindispower last updated on 30/Jan/21

withe pleasur god bless you

$${withe}\:{pleasur}\:{god}\:{bless}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com