Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 130994 by mnjuly1970 last updated on 31/Jan/21

                   ... advanced   integral ...          Ω=∫_0 ^( ∞) (((e^(−x) sin(2x))/(sinh(x))))dx=?

...advancedintegral...Ω=0(exsin(2x)sinh(x))dx=?

Answered by mindispower last updated on 31/Jan/21

x→0  sin(2x)=2x+o(x)  e^(−x) sin(2x)=2x+o(x),sh(x)=x+o(x)  ((e^(−x) sin(2x))/(sh(x)))∼1,integrabl   x→∞,sh(x)>1⇒∣((e^(−x) sin(2x))/(sh(x)))∣<e^(−x) ,integrabl  ⇒Ω exist and finit  sh(x)=((e^(2x) −1)/(2e^x ))  Ω=∫((2e^(−2x) sin(2x))/(1−e^(−2x) ))dx=∫_0 ^∞ ((e^(−t) sin(t))/(1−e^(−t) ))dt  =Σ_(n≥0) ∫_0 ^∞ e^(−(1+n)t) sin(t)dt  =Σ_(n≥0) Im∫_0 ^∞ e^(t(i−(1+n))) dt  =Σ_(n≥0) Im[(e^(t(i−(1+n))) /(i−(1+n)))]_0 ^∞   =Σ_(n≥1) Im(((i+(1+n))/(1+n^2 )))=Σ_(n≥0) (1/(1+n^2 ))..done

x0sin(2x)=2x+o(x)exsin(2x)=2x+o(x),sh(x)=x+o(x)exsin(2x)sh(x)1,integrablx,sh(x)>1⇒∣exsin(2x)sh(x)∣<ex,integrablΩexistandfinitsh(x)=e2x12exΩ=2e2xsin(2x)1e2xdx=0etsin(t)1etdt=n00e(1+n)tsin(t)dt=n0Im0et(i(1+n))dt=n0Im[et(i(1+n))i(1+n)]0=n1Im(i+(1+n)1+n2)=n011+n2..done

Commented by mnjuly1970 last updated on 31/Jan/21

bravo bravo bravo  mr power   extraordinary...

bravobravobravomrpowerextraordinary...

Commented by mnjuly1970 last updated on 31/Jan/21

Answered by Dwaipayan Shikari last updated on 31/Jan/21

(1/i)∫_0 ^∞ ((e^(2ix) −e^(−2ix) )/(e^(2x) −1))dx  =(1/i)Σ_(n=1) ^∞ ∫_0 ^∞ e^(−2nx+2ix) −e^(2x(n+i)) dx  =(1/i)Σ_(n=1) ^∞ (1/(2(n−i)))−(1/(2(n+i)))=Σ_(n=1) ^∞ (1/(n^2 +1))=((π−1)/2)+(π/(2(e^(2π) −1)))

1i0e2ixe2ixe2x1dx=1in=10e2nx+2ixe2x(n+i)dx=1in=112(ni)12(n+i)=n=11n2+1=π12+π2(e2π1)

Commented by mnjuly1970 last updated on 31/Jan/21

sepas mr payan  tashakor...

sepasmrpayantashakor...

Answered by mathmax by abdo last updated on 31/Jan/21

Φ=∫_0 ^∞  ((e^(−x) sin(2x))/(sh(x)))dx ⇒Φ=2∫_0 ^∞  ((e^(−x) sin(2x))/(e^x −e^(−x) ))dx  =2∫_0 ^∞  ((e^(−2x) sin(2x))/(1−e^(−2x) ))dx =_(2x=t)   ∫_0 ^∞   ((e^(−t) sint)/(1−e^(−t) ))dt   =∫_0 ^∞  e^(−t) sintΣ_(n=0) ^∞ e^(−nt)  dt =Σ_(n=0) ^(∞ ) ∫_0 ^∞  e^(−(n+1)t)  sint dt   but  ∫_0 ^∞  e^(−(n+1)t)  sint dt =Im(∫_0 ^∞  e^(−(n+1)t+it) dt)and  ∫_0 ^∞  e^((−(n+1)+i)t) dt =[(1/(−(n+1)+i))e^((−(n+1)+i)t) ]_0 ^∞  =(1/(n+1−i))  =((n+1+i)/((n+1)^2  +1)) ⇒Φ=Σ_(n=0) ^∞  (1/((n+1)^2  +1))=Σ_(n=1) ^∞  (1/(n^2 +1))  the value of this serie is known

Φ=0exsin(2x)sh(x)dxΦ=20exsin(2x)exexdx=20e2xsin(2x)1e2xdx=2x=t0etsint1etdt=0etsintn=0entdt=n=00e(n+1)tsintdtbut0e(n+1)tsintdt=Im(0e(n+1)t+itdt)and0e((n+1)+i)tdt=[1(n+1)+ie((n+1)+i)t]0=1n+1i=n+1+i(n+1)2+1Φ=n=01(n+1)2+1=n=11n2+1thevalueofthisserieisknown

Commented by mnjuly1970 last updated on 31/Jan/21

thanks alot mr mathmax..

thanksalotmrmathmax..

Commented by mathmax by abdo last updated on 31/Jan/21

you are welcome sir.

youarewelcomesir.

Answered by mnjuly1970 last updated on 31/Jan/21

     note ::∫e^(ax) sin(bx)dx=^(alculus (I) ) ((e^(ax) (asin(bx)−bcos(bx)))/(a^2 +b^2 ))+C          Ω=2∫_(0 ) ^( ∞) ((e^(−x) sin(2x))/(e^x −e^(−x) ))=2∫_0 ^( ∞) ((e^(−2x) sin(2x))/(1−e^(−2x) ))dx   =2∫_0 ^( ∞) (e^(−2x) sin(2x)Σ_(n=0) ^∞ e^(−2nx) )dx  =2Σ_(n=0) ^∞ (∫_0 ^(  ∞) sin(2x)e^(−2x(1+n)) dx)   =2Σ_(n=0) ^∞ [((e^(−2(1+n)x) (−2(1+n)sin(2x)−2cos(2x)))/(4(1+n)^2 +4))]_0 ^∞   =2Σ_(n=0) ^∞ (2/(4((1+n)^2 +1)))=Σ_(n=1) ^∞ (1/(n^2 +1))  =Σ_(n=1) ^∞ (1/(n^2 +1))=_(function) ^(upsilon) ((πcoth(π)−1)/2)  ✓✓

note::eaxsin(bx)dx=alculus(I)eax(asin(bx)bcos(bx))a2+b2+CΩ=20exsin(2x)exex=20e2xsin(2x)1e2xdx=20(e2xsin(2x)n=0e2nx)dx=2n=0(0sin(2x)e2x(1+n)dx)=2n=0[e2(1+n)x(2(1+n)sin(2x)2cos(2x))4(1+n)2+4]0=2n=024((1+n)2+1)=n=11n2+1=n=11n2+1=upsilonfunctionπcoth(π)12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com