Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 131021 by mohammad17 last updated on 31/Jan/21

solve    (1):(1+i)^i     (2): log(1+i)^(πi)

solve(1):(1+i)i(2):log(1+i)πi

Answered by Dwaipayan Shikari last updated on 31/Jan/21

(1+i)^i =(√2) (e^((π/4)i) )^i =(cos(log((√2)))+isin(log((√2)))) e^(−(π/4))   πilog(1+i)=πilog((√2))−(π^2 /4)

(1+i)i=2(eπ4i)i=(cos(log(2))+isin(log(2)))eπ4πilog(1+i)=πilog(2)π24

Answered by mr W last updated on 31/Jan/21

(1)  (1+i)=(√2)e^((πi)/4) =e^(ln (√2)+((πi)/4))   (1+i)^i =e^((ln (√2)+((πi)/4))i) =e^(−(π/4)) e^(i ln (√2))   =e^(−(π/4)) [cos (ln (√2))+i sin (ln (√2))]    (2)  ln (1+i)^(πi) =πi ln [e^(ln (√2)+((πi)/4)) ]  =πi(ln (√2)+((πi)/4))  =π(−(π/4)+i ln (√2))

(1)(1+i)=2eπi4=eln2+πi4(1+i)i=e(ln2+πi4)i=eπ4eiln2=eπ4[cos(ln2)+isin(ln2)](2)ln(1+i)πi=πiln[eln2+πi4]=πi(ln2+πi4)=π(π4+iln2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com