Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 131037 by mohammad17 last updated on 31/Jan/21

Commented by mathmax by abdo last updated on 31/Jan/21

48)use the same method...

$$\left.\mathrm{48}\right)\mathrm{use}\:\mathrm{the}\:\mathrm{same}\:\mathrm{method}... \\ $$

Answered by mathmax by abdo last updated on 31/Jan/21

I=∫_0 ^(1/2)  e^(−x^3 ) dx ⇒I =∫_0 ^(1/2) Σ_(n=0) ^∞  (((−x^3 )^n )/(n!))dx =Σ_(n=0) ^∞  (((−1)^n )/(n!))∫_0 ^(1/2)  x^(3n)  dx  =Σ_(n=0) ^∞  (((−1)^n )/(n!))[(1/(3n+1))x^(3n+1) ]_0 ^(1/2)  =Σ_(n=0) ^∞  (((−1)^n )/(n!(3n+1)2^(3n+1) ))  ⇒I =(1/2)−(1/(4.2^4 ))+(1/(2!.7.2^7 ))−....  you can use 5terms of this serie to get approximate value of I

$$\mathrm{I}=\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{e}^{−\mathrm{x}^{\mathrm{3}} } \mathrm{dx}\:\Rightarrow\mathrm{I}\:=\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{x}^{\mathrm{3}} \right)^{\mathrm{n}} }{\mathrm{n}!}\mathrm{dx}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}!}\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{x}^{\mathrm{3n}} \:\mathrm{dx} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}!}\left[\frac{\mathrm{1}}{\mathrm{3n}+\mathrm{1}}\mathrm{x}^{\mathrm{3n}+\mathrm{1}} \right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}!\left(\mathrm{3n}+\mathrm{1}\right)\mathrm{2}^{\mathrm{3n}+\mathrm{1}} } \\ $$$$\Rightarrow\mathrm{I}\:=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}.\mathrm{2}^{\mathrm{4}} }+\frac{\mathrm{1}}{\mathrm{2}!.\mathrm{7}.\mathrm{2}^{\mathrm{7}} }−.... \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{use}\:\mathrm{5terms}\:\mathrm{of}\:\mathrm{this}\:\mathrm{serie}\:\mathrm{to}\:\mathrm{get}\:\mathrm{approximate}\:\mathrm{value}\:\mathrm{of}\:\mathrm{I} \\ $$

Commented by mohammad17 last updated on 31/Jan/21

thank you sir can you help me in all question pleas

$${thank}\:{you}\:{sir}\:{can}\:{you}\:{help}\:{me}\:{in}\:{all}\:{question}\:{pleas} \\ $$

Answered by mathmax by abdo last updated on 31/Jan/21

J =∫_0 ^1  xsin(x^3 )dx  we have sinu =Σ_(n=0) ^∞  (((−1)^n  u^(2n+1) )/((2n+1)!))  with radius R=∞  ⇒sin(x^3 ) =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!))x^(6n+3)  ⇒J =∫_0 ^1  xΣ_(n=0) ^∞  (((−1)^n )/((2n+1)!))x^(6n+3)  dx  =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!))∫_0 ^1  x^(6n+4)  dx =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!))[(1/(6n+5))x^(6n+5) ]_0 ^1   =Σ_(n0) ^∞  (((−1)^n )/((6n+5)(2n+1)!)) ⇒  J =(1/5)−(1/(11.3!)) +(1/(17.5!))−(1/(23.7!))+...  5 terms give a best approximation of J

$$\mathrm{J}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{xsin}\left(\mathrm{x}^{\mathrm{3}} \right)\mathrm{dx}\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{sinu}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{u}^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\:\:\mathrm{with}\:\mathrm{radius}\:\mathrm{R}=\infty \\ $$$$\Rightarrow\mathrm{sin}\left(\mathrm{x}^{\mathrm{3}} \right)\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\mathrm{x}^{\mathrm{6n}+\mathrm{3}} \:\Rightarrow\mathrm{J}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\mathrm{x}^{\mathrm{6n}+\mathrm{3}} \:\mathrm{dx} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{6n}+\mathrm{4}} \:\mathrm{dx}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\left[\frac{\mathrm{1}}{\mathrm{6n}+\mathrm{5}}\mathrm{x}^{\mathrm{6n}+\mathrm{5}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\sum_{\mathrm{n0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{6n}+\mathrm{5}\right)\left(\mathrm{2n}+\mathrm{1}\right)!}\:\Rightarrow \\ $$$$\mathrm{J}\:=\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{11}.\mathrm{3}!}\:+\frac{\mathrm{1}}{\mathrm{17}.\mathrm{5}!}−\frac{\mathrm{1}}{\mathrm{23}.\mathrm{7}!}+... \\ $$$$\mathrm{5}\:\mathrm{terms}\:\mathrm{give}\:\mathrm{a}\:\mathrm{best}\:\mathrm{approximation}\:\mathrm{of}\:\mathrm{J} \\ $$$$ \\ $$

Commented by mohammad17 last updated on 31/Jan/21

nice sir thank you

$${nice}\:{sir}\:{thank}\:{you} \\ $$

Commented by mathmax by abdo last updated on 31/Jan/21

another we know  u−(u^3 /6)≤sinu ≤u ⇒x^3 −(x^9 /6)≤sin(x^3 )≤x^3  ⇒  x^4 −(x^(10) /6)≤xsin(x^3 )≤x^4  ⇒∫_0 ^1 (x^4 −(x^(10) /6))dx≤∫_0 ^1  xsin(x^3 )dx≤∫_0 ^1  x^4 dx ⇒  [(x^5 /5)−(1/(6.11))x^(11) ]_0 ^1  ≤J≤[(x^5 /5)]_0 ^1  ⇒(1/5)−(1/(6×11))≤J≤(1/5)  so v_o =(1/2)((1/5)−(1/(6.11))+(1/5)) =(1/5)−(1/(12.11)) is  approximate value of J

$$\mathrm{another}\:\mathrm{we}\:\mathrm{know}\:\:\mathrm{u}−\frac{\mathrm{u}^{\mathrm{3}} }{\mathrm{6}}\leqslant\mathrm{sinu}\:\leqslant\mathrm{u}\:\Rightarrow\mathrm{x}^{\mathrm{3}} −\frac{\mathrm{x}^{\mathrm{9}} }{\mathrm{6}}\leqslant\mathrm{sin}\left(\mathrm{x}^{\mathrm{3}} \right)\leqslant\mathrm{x}^{\mathrm{3}} \:\Rightarrow \\ $$$$\mathrm{x}^{\mathrm{4}} −\frac{\mathrm{x}^{\mathrm{10}} }{\mathrm{6}}\leqslant\mathrm{xsin}\left(\mathrm{x}^{\mathrm{3}} \right)\leqslant\mathrm{x}^{\mathrm{4}} \:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{x}^{\mathrm{4}} −\frac{\mathrm{x}^{\mathrm{10}} }{\mathrm{6}}\right)\mathrm{dx}\leqslant\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{xsin}\left(\mathrm{x}^{\mathrm{3}} \right)\mathrm{dx}\leqslant\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{4}} \mathrm{dx}\:\Rightarrow \\ $$$$\left[\frac{\mathrm{x}^{\mathrm{5}} }{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{6}.\mathrm{11}}\mathrm{x}^{\mathrm{11}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:\leqslant\mathrm{J}\leqslant\left[\frac{\mathrm{x}^{\mathrm{5}} }{\mathrm{5}}\right]_{\mathrm{0}} ^{\mathrm{1}} \:\Rightarrow\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{6}×\mathrm{11}}\leqslant\mathrm{J}\leqslant\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$\mathrm{so}\:\mathrm{v}_{\mathrm{o}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{6}.\mathrm{11}}+\frac{\mathrm{1}}{\mathrm{5}}\right)\:=\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{12}.\mathrm{11}}\:\mathrm{is}\:\:\mathrm{approximate}\:\mathrm{value}\:\mathrm{of}\:\mathrm{J} \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 31/Jan/21

you arewelcome sir.

$$\mathrm{you}\:\mathrm{arewelcome}\:\mathrm{sir}. \\ $$

Answered by mathmax by abdo last updated on 31/Jan/21

K =∫_0 ^(1/2)  ((atctanx)/x)dx  we have (d/dx)(arctanx)=(1/(1+x^2 )) =Σ_(n=0) ^∞  (−1)^n  x^(2n)  ⇒  arctanx =Σ_(n=0) ^∞  (((−1)^n )/(2n+1))x^(2n+1)  +c (c=0)=Σ_(n=0) ^∞  (((−1)^n )/(2n+1))x^(2n+1)   withradius R =1⇒K =∫_0 ^(1/2)  Σ_(n=0) ^∞  (((−1)^n )/(2n+1)) x^(2n)  dx  =Σ_(n=0) ^∞  (((−1)^n )/(2n+1))∫_0 ^(1/2)  x^(2n) dx =Σ_(n=0) ^∞  (((−1)^n )/(2n+1))[(1/(2n+1))x^(2n+1) ]_0 ^(1/2)   =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 .2^(2n+1) )) ⇒  K =(1/2)−(1/(3^2 .2^3 ))+(1/(5^2 .2^5 ))−....

$$\mathrm{K}\:=\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\frac{\mathrm{atctanx}}{\mathrm{x}}\mathrm{dx}\:\:\mathrm{we}\:\mathrm{have}\:\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{arctanx}\right)=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{x}^{\mathrm{2n}} \:\Rightarrow \\ $$$$\mathrm{arctanx}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}+\mathrm{1}}\mathrm{x}^{\mathrm{2n}+\mathrm{1}} \:+\mathrm{c}\:\left(\mathrm{c}=\mathrm{0}\right)=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}+\mathrm{1}}\mathrm{x}^{\mathrm{2n}+\mathrm{1}} \\ $$$$\mathrm{withradius}\:\mathrm{R}\:=\mathrm{1}\Rightarrow\mathrm{K}\:=\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}+\mathrm{1}}\:\mathrm{x}^{\mathrm{2n}} \:\mathrm{dx} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}+\mathrm{1}}\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{x}^{\mathrm{2n}} \mathrm{dx}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}+\mathrm{1}}\left[\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{1}}\mathrm{x}^{\mathrm{2n}+\mathrm{1}} \right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{2}} .\mathrm{2}^{\mathrm{2n}+\mathrm{1}} }\:\Rightarrow \\ $$$$\mathrm{K}\:=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} .\mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} .\mathrm{2}^{\mathrm{5}} }−.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com