Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 131071 by mr W last updated on 01/Feb/21

Commented by mr W last updated on 01/Feb/21

a small ball of mass m is fixed on  the inner wall of a hollow cylinder  of radius R and mass M.  the cylinder is released from rest  at the position as shown and rolls  on the ground.  find the contact force N in terms of  x.

asmallballofmassmisfixedontheinnerwallofahollowcylinderofradiusRandmassM.thecylinderisreleasedfromrestatthepositionasshownandrollsontheground.findthecontactforceNintermsofx.

Answered by ajfour last updated on 01/Feb/21

Commented by ajfour last updated on 01/Feb/21

mgR(1−cos θ)=Mu^2 +K     K=(1/2)m[(ωRcos θ+u)^2 +(ωRsin θ)^2 ]  N−(M+m)g=m(d^2 y/dt^2 )  y=R+Rcos θ  (dy/dt)=−ωRsin θ  (d^2 y/dt^2 )=−ω^2 Rcos θ−αRsin θ  θ=(x/R)  ωR=u  mgR(1−cos θ)=Mu^2 +K  K=mu^2 (1+cos θ)  u^2 =((mgR(1−cos θ))/(M+m(1+cos θ)))=ω^2 R^2   N=(M+m)g+m(d^2 y/dt^2 )  (d^2 y/dt^2 )=−ω^2 Rcos θ−αRsin θ  u^2 =((mgR(1−cos θ))/(M+m(1+cos θ)))=ω^2 R^2   α=((ωdω)/dθ)    ;   θ=(x/R)

mgR(1cosθ)=Mu2+KK=12m[(ωRcosθ+u)2+(ωRsinθ)2]N(M+m)g=md2ydt2y=R+Rcosθdydt=ωRsinθd2ydt2=ω2RcosθαRsinθθ=xRωR=umgR(1cosθ)=Mu2+KK=mu2(1+cosθ)u2=mgR(1cosθ)M+m(1+cosθ)=ω2R2N=(M+m)g+md2ydt2d2ydt2=ω2RcosθαRsinθu2=mgR(1cosθ)M+m(1+cosθ)=ω2R2α=ωdωdθ;θ=xR

Commented by ajfour last updated on 01/Feb/21

(1/2)Mu^2 +(1/2)(MR^2 )ω^2 =Mu^2

12Mu2+12(MR2)ω2=Mu2

Commented by mr W last updated on 01/Feb/21

yes. i see.

yes.isee.

Answered by mr W last updated on 01/Feb/21

Commented by mr W last updated on 02/Feb/21

x=Rθ  ω=(dθ/dt)  α=(dω/dt)  OS=f=(m/(M+m))×R=(R/((M/m)+1))  let λ=(M/m)+1  ⇒f=(R/λ)  I_B =MR^2 +MR^2 +m(2R cos (θ/2))^2   =2MR^2 +2mR^2 (cos θ+1)  =2R^2 [M+m(1+cos θ)]  (1/2)I_B ω^2 =mgR(1−cos θ)  R^2 [M+m(1+cos θ)]ω^2 =mgR(1−cos θ)  ω^2 =((g(1−cos θ))/(R((M/m)+1+cos θ)))=((g(1−cos θ))/(R(λ+cos θ)))  ⇒ω=(√(g/R))(√((1−cos θ)/(λ+cos θ)))  (dθ/dt)=(√(g/R))(√((1−cos θ)/(λ+cos θ)))  ∫(√((λ+cos θ)/(1−cos θ)))dθ=(√(g/R))∫dt  ⇒t=(√(R/g))∫_0 ^θ (√((λ+cos θ)/(1−cos θ)))dθ  period T  T=2(√(R/g))∫_0 ^π (√((λ+cos θ)/(1−cos θ)))dθ    (d/dt)(I_B ω)=(M+m)gfsin θ  I_B α+ω^2 (dI_B /dθ)=((gR)/λ)(M+m)sin θ  2R^2 [M+m(1+cos θ)]α−2ω^2 R^2 msin θ=((gR)/λ)(M+m)sin θ  (λ+1+cos θ)α=((g/(2R))+ω^2 )sin θ  α=(g/(2R))×(((λ+2−cos θ)sin θ)/((λ+cos θ)(λ+1+cos θ)))    v_(y,S) =ωfsin θ=(R/λ)ω sin θ  a_(y,S) =(dv_y /dt)=(R/λ)(α sin θ+ω^2 cos θ)  a_(y,S) =((g(1−cos θ)[cos^2  θ+3(λ+1)cos θ+λ+2])/(2λ(λ+cos θ)(λ+1+cos θ)))  (M+m)g−N=(M+m)a_(y,S)   N=(M+m)(g−a_(y,S) )  ⇒(N/((M+m)g))=1−(((1−cos θ)[cos^2  θ+3(λ+1)cos θ+λ+2])/(2λ(λ+cos θ)(λ+1+cos θ)))  (N_(max) /((M+m)g))=1+(2/(λ(λ−1)))

x=Rθω=dθdtα=dωdtOS=f=mM+m×R=RMm+1letλ=Mm+1f=RλIB=MR2+MR2+m(2Rcosθ2)2=2MR2+2mR2(cosθ+1)=2R2[M+m(1+cosθ)]12IBω2=mgR(1cosθ)R2[M+m(1+cosθ)]ω2=mgR(1cosθ)ω2=g(1cosθ)R(Mm+1+cosθ)=g(1cosθ)R(λ+cosθ)ω=gR1cosθλ+cosθdθdt=gR1cosθλ+cosθλ+cosθ1cosθdθ=gRdtt=Rg0θλ+cosθ1cosθdθperiodTT=2Rg0πλ+cosθ1cosθdθddt(IBω)=(M+m)gfsinθIBα+ω2dIBdθ=gRλ(M+m)sinθ2R2[M+m(1+cosθ)]α2ω2R2msinθ=gRλ(M+m)sinθ(λ+1+cosθ)α=(g2R+ω2)sinθα=g2R×(λ+2cosθ)sinθ(λ+cosθ)(λ+1+cosθ)vy,S=ωfsinθ=Rλωsinθay,S=dvydt=Rλ(αsinθ+ω2cosθ)ay,S=g(1cosθ)[cos2θ+3(λ+1)cosθ+λ+2]2λ(λ+cosθ)(λ+1+cosθ)(M+m)gN=(M+m)ay,SN=(M+m)(gay,S)N(M+m)g=1(1cosθ)[cos2θ+3(λ+1)cosθ+λ+2]2λ(λ+cosθ)(λ+1+cosθ)Nmax(M+m)g=1+2λ(λ1)

Commented by mr W last updated on 02/Feb/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com