Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 131094 by Chhing last updated on 01/Feb/21

       Calculate    1/ I = ∮_c^+  ((zdz)/((z−1)^2 (z^2 −2z+1−2i)))  ,C={z/∣z∣=2}     2/ J =∮_c^+  ((ch(z)dz)/(z(e^z −1)))  ,  C={z/∣z−3i∣=4}    3/ K=∮_c^+  ((sin(z)dz)/(z^3 (z+1)^2 ))  , C={z/∣z∣=2}

Calculate1/I=c+zdz(z1)2(z22z+12i),C={z/z∣=2}2/J=c+ch(z)dzz(ez1),C={z/z3i∣=4}3/K=c+sin(z)dzz3(z+1)2,C={z/z∣=2}

Commented by mathmax by abdo last updated on 02/Feb/21

sir what do you mean by C^+  ? define it...

sirwhatdoyoumeanbyC+?defineit...

Answered by mathmax by abdo last updated on 01/Feb/21

1) I =∫_C^+     ((zdz)/((z−1)^2 (z^2 −2z+1−2i))) let ϕ(z)=(z/((z−1)^2 (z^2 −2z+1−2i)))  z^2 −2z+1−2i=0 ⇒Δ^′  =1−(1−2i)=2i ⇒z_1 =1+(√(2i))=1+(√2)e^((iπ)/4)   z_2 =1−(√2)e^((iπ)/4)   we have z_1 =1+(√2){(1/( (√2)))+(i/( (√2)))}=1+1+i=2+i ⇒  ∣z_1 ∣=(√(4+1))=(√5)>(√2)  and z_2 =1−(√2){(1/( (√2)))−(i/( (√2)))} =1−1+i=i ⇒∣z_1 ∣<2  z_2  ∈C^+    also z=1 is double pole for ϕ ⇒  I =∫_C^+   ϕ(z)dz =2iπ{Res(ϕ,1) +Res(ϕ,i)}  Res(ϕ,1) =lim_(z→1 )  (1/((2−1)!)){(z−1)^2 ϕ(z)}^((1))   =lim_(z→1) ((z/(z^2 −2z+1−2i)))^((1))    =lim_(z→1) (((z^2 −2z+1−2i−z(2z−2))/((z^2 −2z+1−2i)^2 )))  =((1−2+1−2i−o)/((1−2+1−2i)^2 ))=((−2i)/((−2i)^2 ))=((−2i)/(−4)) =(i/2)  Res(ϕ,i)=lim_(z→i) (z−i)ϕ(z) =lim_(z→i) (z−i)(z/((z−1)^2 (z−i)(z−2−i)))  =lim_(z→i)   (z/((z−1)^2 (z−2−i)))=(i/((i−1)^2 (−2))) =((−i)/(2(−2i)))=(1/4) ⇒  I =2iπ{(i/2)+(1/4)} =−π +((iπ)/2)

1)I=C+zdz(z1)2(z22z+12i)letφ(z)=z(z1)2(z22z+12i)z22z+12i=0Δ=1(12i)=2iz1=1+2i=1+2eiπ4z2=12eiπ4wehavez1=1+2{12+i2}=1+1+i=2+iz1∣=4+1=5>2andz2=12{12i2}=11+i=i⇒∣z1∣<2z2C+alsoz=1isdoublepoleforφI=C+φ(z)dz=2iπ{Res(φ,1)+Res(φ,i)}Res(φ,1)=limz11(21)!{(z1)2φ(z)}(1)=limz1(zz22z+12i)(1)=limz1(z22z+12iz(2z2)(z22z+12i)2)=12+12io(12+12i)2=2i(2i)2=2i4=i2Res(φ,i)=limzi(zi)φ(z)=limzi(zi)z(z1)2(zi)(z2i)=limziz(z1)2(z2i)=i(i1)2(2)=i2(2i)=14I=2iπ{i2+14}=π+iπ2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com