Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 131097 by dw last updated on 01/Feb/21

Determine the value of (S/π), if S is the sum, in radians,  all equation solutions contained in the interval [0,14π].    the equation is:  cos(x)+cos^5 (x)+cos(7x)=3

$${Determine}\:{the}\:{value}\:{of}\:\frac{{S}}{\pi},\:{if}\:{S}\:{is}\:{the}\:{sum},\:{in}\:{radians}, \\ $$$${all}\:{equation}\:{solutions}\:{contained}\:{in}\:{the}\:{interval}\:\left[\mathrm{0},\mathrm{14}\pi\right]. \\ $$$$ \\ $$$${the}\:{equation}\:{is}: \\ $$$${cos}\left({x}\right)+{cos}^{\mathrm{5}} \left({x}\right)+{cos}\left(\mathrm{7}{x}\right)=\mathrm{3} \\ $$

Answered by MJS_new last updated on 01/Feb/21

the only solution is cos x =1  ⇒ x=2nπ  ⇒ S=2π(0+1+2+...+14)=210π  ⇒ answer is 210

$$\mathrm{the}\:\mathrm{only}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{cos}\:{x}\:=\mathrm{1} \\ $$$$\Rightarrow\:{x}=\mathrm{2}{n}\pi \\ $$$$\Rightarrow\:{S}=\mathrm{2}\pi\left(\mathrm{0}+\mathrm{1}+\mathrm{2}+...+\mathrm{14}\right)=\mathrm{210}\pi \\ $$$$\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:\mathrm{210} \\ $$

Commented by dw last updated on 01/Feb/21

Sir^� , how could I prove it?

$${Si}\bar {{r}},\:{how}\:{could}\:{I}\:{prove}\:{it}? \\ $$

Commented by dw last updated on 01/Feb/21

Thank you for your solution.

$${Thank}\:{you}\:{for}\:{your}\:{solution}. \\ $$

Answered by MJS_new last updated on 01/Feb/21

cos x +cos^5  x +cos 7x −3=0  with  cos 7x =64cos^7  x −112cos^5  x +56cos^3  x −7cos x  and  c=cos x  we have  64c^7 −111c^5 +56c^3 −6c−3=0  trying factors of the constant {±1, ±3} we  get  c_1 =1  f=64c^6 +64c^5 −47c^4 −47c^3 +9c^2 +9c+3  this has no real solution  f′=384c^5 +320c^4 −188c^3 −141c^2 +18c+9  this has the zeros  c_1 ≈−.891 ⇒ f≈1.83  c_2 ≈−.608 ⇒ f≈2.91  c_3 ≈−.238 ⇒ f≈1.81  c_4 ≈.302 ⇒ f≈5.06  c_5 ≈.601 ⇒ f≈3.36  ⇒ the absolute minimum of f is ≈1.81  ⇒ no more zeros  ⇒  c=1

$$\mathrm{cos}\:{x}\:+\mathrm{cos}^{\mathrm{5}} \:{x}\:+\mathrm{cos}\:\mathrm{7}{x}\:−\mathrm{3}=\mathrm{0} \\ $$$$\mathrm{with} \\ $$$$\mathrm{cos}\:\mathrm{7}{x}\:=\mathrm{64cos}^{\mathrm{7}} \:{x}\:−\mathrm{112cos}^{\mathrm{5}} \:{x}\:+\mathrm{56cos}^{\mathrm{3}} \:{x}\:−\mathrm{7cos}\:{x} \\ $$$$\mathrm{and} \\ $$$${c}=\mathrm{cos}\:{x} \\ $$$$\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{64}{c}^{\mathrm{7}} −\mathrm{111}{c}^{\mathrm{5}} +\mathrm{56}{c}^{\mathrm{3}} −\mathrm{6}{c}−\mathrm{3}=\mathrm{0} \\ $$$$\mathrm{trying}\:\mathrm{factors}\:\mathrm{of}\:\mathrm{the}\:\mathrm{constant}\:\left\{\pm\mathrm{1},\:\pm\mathrm{3}\right\}\:\mathrm{we} \\ $$$$\mathrm{get} \\ $$$${c}_{\mathrm{1}} =\mathrm{1} \\ $$$${f}=\mathrm{64}{c}^{\mathrm{6}} +\mathrm{64}{c}^{\mathrm{5}} −\mathrm{47}{c}^{\mathrm{4}} −\mathrm{47}{c}^{\mathrm{3}} +\mathrm{9}{c}^{\mathrm{2}} +\mathrm{9}{c}+\mathrm{3} \\ $$$$\mathrm{this}\:\mathrm{has}\:\mathrm{no}\:\mathrm{real}\:\mathrm{solution} \\ $$$${f}'=\mathrm{384}{c}^{\mathrm{5}} +\mathrm{320}{c}^{\mathrm{4}} −\mathrm{188}{c}^{\mathrm{3}} −\mathrm{141}{c}^{\mathrm{2}} +\mathrm{18}{c}+\mathrm{9} \\ $$$$\mathrm{this}\:\mathrm{has}\:\mathrm{the}\:\mathrm{zeros} \\ $$$${c}_{\mathrm{1}} \approx−.\mathrm{891}\:\Rightarrow\:{f}\approx\mathrm{1}.\mathrm{83} \\ $$$${c}_{\mathrm{2}} \approx−.\mathrm{608}\:\Rightarrow\:{f}\approx\mathrm{2}.\mathrm{91} \\ $$$${c}_{\mathrm{3}} \approx−.\mathrm{238}\:\Rightarrow\:{f}\approx\mathrm{1}.\mathrm{81} \\ $$$${c}_{\mathrm{4}} \approx.\mathrm{302}\:\Rightarrow\:{f}\approx\mathrm{5}.\mathrm{06} \\ $$$${c}_{\mathrm{5}} \approx.\mathrm{601}\:\Rightarrow\:{f}\approx\mathrm{3}.\mathrm{36} \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{absolute}\:\mathrm{minimum}\:\mathrm{of}\:{f}\:\mathrm{is}\:\approx\mathrm{1}.\mathrm{81} \\ $$$$\Rightarrow\:\mathrm{no}\:\mathrm{more}\:\mathrm{zeros} \\ $$$$\Rightarrow \\ $$$${c}=\mathrm{1} \\ $$

Commented by dw last updated on 01/Feb/21

Thank you Sir!!

$${Thank}\:{you}\:{Sir}!! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com