Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 131103 by mnjuly1970 last updated on 01/Feb/21

                 ...nice  calculus...   prove  that ::    Σ_(n∈N) (((Γ^2 (n))/(2^(−n) (2n−1)!)))=π

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:{calculus}... \\ $$$$\:{prove}\:\:{that}\::: \\ $$$$\:\:\underset{{n}\in\mathbb{N}} {\sum}\left(\frac{\Gamma^{\mathrm{2}} \left({n}\right)}{\mathrm{2}^{−{n}} \left(\mathrm{2}{n}−\mathrm{1}\right)!}\right)=\pi \\ $$$$ \\ $$

Answered by Ar Brandon last updated on 01/Feb/21

S=Σ_(n=1) ^∞ ((Γ^2 (n))/(2^(−n) (2n−1)!))=Σ_(n=1) ^∞ ((β(n,n))/2^(−n) )     =Σ_(n=1) ^∞ (1/2^(−n) )∫_0 ^1 x^(n−1) (1−x)^(n−1) dx     =∫_0 ^1 {Σ_(n=1) ^∞ 2∙2^(n−1) (x−x^2 )^(n−1) }dx     =∫_0 ^1 {2∙(1/(1−(2x−2x^2 )))}dx=∫_0 ^1 ((2dx)/(2x^2 −2x+1))     =∫_0 ^1 (dx/(x^2 −x+(1/2)))=∫_0 ^1 (dx/((x−(1/2))^2 +(1/4)))     =2[tan^(−1) (2x−1)]_0 ^1 =2((π/4)+(π/4))=π

$$\mathrm{S}=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\Gamma^{\mathrm{2}} \left(\mathrm{n}\right)}{\mathrm{2}^{−\mathrm{n}} \left(\mathrm{2n}−\mathrm{1}\right)!}=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\beta\left(\mathrm{n},\mathrm{n}\right)}{\mathrm{2}^{−\mathrm{n}} } \\ $$$$\:\:\:=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{−\mathrm{n}} }\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{n}−\mathrm{1}} \left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}−\mathrm{1}} \mathrm{dx} \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \left\{\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{2}\centerdot\mathrm{2}^{\mathrm{n}−\mathrm{1}} \left(\mathrm{x}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{n}−\mathrm{1}} \right\}\mathrm{dx} \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \left\{\mathrm{2}\centerdot\frac{\mathrm{1}}{\mathrm{1}−\left(\mathrm{2x}−\mathrm{2x}^{\mathrm{2}} \right)}\right\}\mathrm{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2dx}}{\mathrm{2x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{1}} \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$\:\:\:=\mathrm{2}\left[\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2x}−\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} =\mathrm{2}\left(\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{4}}\right)=\pi \\ $$

Commented by mnjuly1970 last updated on 01/Feb/21

   excellent mr brandon    extraordinary..

$$\:\:\:{excellent}\:{mr}\:{brandon} \\ $$$$\:\:{extraordinary}.. \\ $$

Answered by Dwaipayan Shikari last updated on 01/Feb/21

Σ_(n=1) ^∞ ((Γ^2 (n))/(2^(−n) Γ(2n)))=∫_0 ^1 Σ_(n=1) ^∞ 2^n x^(n−1) (1−x)^(n−1) dx  =2∫_0 ^1 (1/(1−2x(1−x)))dx=∫_0 ^1 (1/(x^2 −x+(1/2)))dx=2∫_0 ^1 (1/((x−(1/2))^2 +(1/4)))dx  =2((π/2))=π

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\Gamma^{\mathrm{2}} \left({n}\right)}{\mathrm{2}^{−{n}} \Gamma\left(\mathrm{2}{n}\right)}=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{2}^{{n}} {x}^{{n}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{n}−\mathrm{1}} {dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}−\mathrm{2}{x}\left(\mathrm{1}−{x}\right)}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{x}^{\mathrm{2}} −{x}+\frac{\mathrm{1}}{\mathrm{2}}}{dx}=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}}{dx} \\ $$$$=\mathrm{2}\left(\frac{\pi}{\mathrm{2}}\right)=\pi \\ $$

Commented by mnjuly1970 last updated on 01/Feb/21

very nice .thank you so much=.

$${very}\:{nice}\:.{thank}\:{you}\:{so}\:{much}=. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com