Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 131107 by ZiYangLee last updated on 01/Feb/21

Solve sin^(−1) x+sin^(−1) (x/2)=((2π)/3)

Solvesin1x+sin1x2=2π3

Answered by mr W last updated on 01/Feb/21

let t=(x/2)>0  sin^(−1)  (2t)=((2π)/3)−sin^(−1) t  2t=sin (((2π)/3)−sin^(−1) t)=((√3)/2) cos (sin^(−1) t)+(1/2)t  3t=(√3) cos (sin^(−1) t)  3t=(√(3(1−t^2 )))  9t^2 =3(1−t^2 )  t^2 =(1/4)  t=(1/2)  ⇒x=1

lett=x2>0sin1(2t)=2π3sin1t2t=sin(2π3sin1t)=32cos(sin1t)+12t3t=3cos(sin1t)3t=3(1t2)9t2=3(1t2)t2=14t=12x=1

Answered by EDWIN88 last updated on 02/Feb/21

⇔ sin (sin^(−1) x+sin^(−1) ((x/2)))=sin ((2π)/3)  ⇔x cos (sin^(−1) ((x/2)))+(x/2)cos (sin^(−1) (x))= (1/2)(√3)  ⇔ x(√(1−(x^2 /4))) +(x/2)(√(1−x^2 )) = (1/2)(√3)  ⇔ x(√(4−x^2 )) +x(√(1−x^2 )) = (√3)  ⇔ x(√(4−x^2 )) = (√3) −x(√(1−x^2 ))  ⇒x^2 (4−x^2 )=3−2x(√(3−3x^2 ))+x^2 (1−x^2 )  ⇒3x^2  = 3−2x(√(3−3x^2 ))  ⇒4x^2 (3−3x^2 )=9(1−x^2 )^2   ⇒let h=x^2   ⇒4h(3−3h)=9(1−2h+h^2 )  ⇒12h−12h^2 =9−18h+9h^2   ⇒4h−4h^2 =3−6h+3h^2   ⇒7h^2 −10h+3=0  ⇒(7h−3)(h−1)=0  ⇒ { ((h=1⇒x^2 =1 ; x=1)),((h=(3/7)⇒x=((√(21))/7) )) :}

sin(sin1x+sin1(x2))=sin2π3xcos(sin1(x2))+x2cos(sin1(x))=123x1x24+x21x2=123x4x2+x1x2=3x4x2=3x1x2x2(4x2)=32x33x2+x2(1x2)3x2=32x33x24x2(33x2)=9(1x2)2leth=x24h(33h)=9(12h+h2)12h12h2=918h+9h24h4h2=36h+3h27h210h+3=0(7h3)(h1)=0{h=1x2=1;x=1h=37x=217

Commented by mr W last updated on 02/Feb/21

x=((√(21))/7) is not a solution of  sin^(−1) x+sin^(−1) (x/2)=((2π)/3),  but a solution of  sin^(−1) x+sin^(−1) (x/2)=(π/3).  this is due to your step 1. because  sin ((2π)/3)=sin (π/3)=(1/2).

x=217isnotasolutionofsin1x+sin1x2=2π3,butasolutionofsin1x+sin1x2=π3.thisisduetoyourstep1.becausesin2π3=sinπ3=12.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com