Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 131211 by mnjuly1970 last updated on 02/Feb/21

            ...calculus...   prove that::   𝚽=∫_0 ^( (𝛑/4)) (((√(tan(x)+tan^2 (x)))/( (√(tan(x)βˆ’tan^2 (x))))) sin(x))dx       =(1/2)+((βˆšπ›‘)/8) (((πšͺ((1/4)))/(πšͺ((3/4))))βˆ’((πšͺ((3/4)))/(πšͺ((5/4)))))

$$\:\:\:\:\:\:\:\:\:\:\:\:...{calculus}... \\ $$$$\:{prove}\:{that}:: \\ $$$$\:\boldsymbol{\Phi}=\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{4}}} \left(\frac{\sqrt{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)+\boldsymbol{{tan}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)}}{\:\sqrt{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)βˆ’\boldsymbol{{tan}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)}}\:\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\right)\boldsymbol{{dx}}\: \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\boldsymbol{\pi}}}{\mathrm{8}}\:\left(\frac{\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\boldsymbol{\Gamma}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}βˆ’\frac{\boldsymbol{\Gamma}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\boldsymbol{\Gamma}\left(\frac{\mathrm{5}}{\mathrm{4}}\right)}\right) \\ $$

Answered by Ar Brandon last updated on 02/Feb/21

Ξ¦=∫_0 ^(Ο€/4) (((√(tanx+tan^2 x))/( (√(tanxβˆ’tan^2 x))))sinx)dx=∫_0 ^(Ο€/4) (√((1+tanx)/(1βˆ’tanx)))βˆ™((tanx)/( (√(1+tan^2 x))))dx      =∫_0 ^(Ο€/4) (((1+tanx)tanx)/( (√((1βˆ’tan^2 x)(1+tan^2 x)))))dx, tanx=t β‡’dx=(dt/(1+t^2 ))      =∫_0 ^1 ((t+t^2 )/( (√((1βˆ’t^2 )(1+t^2 )))))βˆ™(dt/(1+t^2 ))      =∫_0 ^1 {(t/( (1+t^2 )(√((1βˆ’t^2 )(1+t^2 )))))+(t^2 /((1+t^2 )(√((1βˆ’t^2 )(1+t^2 )))))}dt      =(1/2)∫_0 ^1 (du/((1+u)(√(1βˆ’u^2 ))))+∫_0 ^1 ((u^(1/2) du)/((1+u)(√(1βˆ’u^2 ))))  (1/(u+1))=v β‡’βˆ’(du/((u+1)^2 ))=dv β‡’du=βˆ’(dv/v^2 )  Ξ¦=(1/2)∫_(1/2) ^1 (v/( (√((2/v)βˆ’(1/v^2 )))))βˆ™(dv/v^2 )+∫_0 ^1 ((u^(1/2) du)/((1+u)(√(1βˆ’u^2 ))))      =(1/2)∫_(1/2) ^1 (dv/( (√(2vβˆ’1))))+(1/2)∫_0 ^1 (p^(1/4) /((1+p^(1/2) )(√(1βˆ’p))))βˆ™(dp/p^(1/2) )      =1+(1/2)∫_0 ^1 (p^(βˆ’1/4) /((1+p^(1/2) )(√(1βˆ’p))))dp  ...

$$\Phi=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left(\frac{\sqrt{\mathrm{tanx}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}}}{\:\sqrt{\mathrm{tanx}βˆ’\mathrm{tan}^{\mathrm{2}} \mathrm{x}}}\mathrm{sinx}\right)\mathrm{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \sqrt{\frac{\mathrm{1}+\mathrm{tanx}}{\mathrm{1}βˆ’\mathrm{tanx}}}\centerdot\frac{\mathrm{tanx}}{\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}}}\mathrm{dx} \\ $$$$\:\:\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\left(\mathrm{1}+\mathrm{tanx}\right)\mathrm{tanx}}{\:\sqrt{\left(\mathrm{1}βˆ’\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)}}\mathrm{dx},\:\mathrm{tanx}=\mathrm{t}\:\Rightarrow\mathrm{dx}=\frac{\mathrm{dt}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} } \\ $$$$\:\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{t}+\mathrm{t}^{\mathrm{2}} }{\:\sqrt{\left(\mathrm{1}βˆ’\mathrm{t}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}}\centerdot\frac{\mathrm{dt}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} } \\ $$$$\:\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \left\{\frac{\mathrm{t}}{\:\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\sqrt{\left(\mathrm{1}βˆ’\mathrm{t}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}}+\frac{\mathrm{t}^{\mathrm{2}} }{\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\sqrt{\left(\mathrm{1}βˆ’\mathrm{t}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}}\right\}\mathrm{dt} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{du}}{\left(\mathrm{1}+\mathrm{u}\right)\sqrt{\mathrm{1}βˆ’\mathrm{u}^{\mathrm{2}} }}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{u}^{\mathrm{1}/\mathrm{2}} \mathrm{du}}{\left(\mathrm{1}+\mathrm{u}\right)\sqrt{\mathrm{1}βˆ’\mathrm{u}^{\mathrm{2}} }} \\ $$$$\frac{\mathrm{1}}{\mathrm{u}+\mathrm{1}}=\mathrm{v}\:\Rightarrowβˆ’\frac{\mathrm{du}}{\left(\mathrm{u}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{dv}\:\Rightarrow\mathrm{du}=βˆ’\frac{\mathrm{dv}}{\mathrm{v}^{\mathrm{2}} } \\ $$$$\Phi=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}/\mathrm{2}} ^{\mathrm{1}} \frac{\mathrm{v}}{\:\sqrt{\frac{\mathrm{2}}{\mathrm{v}}βˆ’\frac{\mathrm{1}}{\mathrm{v}^{\mathrm{2}} }}}\centerdot\frac{\mathrm{dv}}{\mathrm{v}^{\mathrm{2}} }+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{u}^{\mathrm{1}/\mathrm{2}} \mathrm{du}}{\left(\mathrm{1}+\mathrm{u}\right)\sqrt{\mathrm{1}βˆ’\mathrm{u}^{\mathrm{2}} }} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}/\mathrm{2}} ^{\mathrm{1}} \frac{\mathrm{dv}}{\:\sqrt{\mathrm{2v}βˆ’\mathrm{1}}}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{p}^{\mathrm{1}/\mathrm{4}} }{\left(\mathrm{1}+\mathrm{p}^{\mathrm{1}/\mathrm{2}} \right)\sqrt{\mathrm{1}βˆ’\mathrm{p}}}\centerdot\frac{\mathrm{dp}}{\mathrm{p}^{\mathrm{1}/\mathrm{2}} } \\ $$$$\:\:\:\:=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{p}^{βˆ’\mathrm{1}/\mathrm{4}} }{\left(\mathrm{1}+\mathrm{p}^{\mathrm{1}/\mathrm{2}} \right)\sqrt{\mathrm{1}βˆ’\mathrm{p}}}\mathrm{dp} \\ $$$$... \\ $$

Commented by mnjuly1970 last updated on 02/Feb/21

grateful ..for your  effort  mr brandon...

$${grateful}\:..{for}\:{your}\:\:{effort} \\ $$$${mr}\:{brandon}... \\ $$

Commented by Ar Brandon last updated on 02/Feb/21

Thank you Sir ���� Got stucked unfortunately

Commented by mnjuly1970 last updated on 02/Feb/21

Commented by Ar Brandon last updated on 02/Feb/21

Nice��

Commented by mnjuly1970 last updated on 02/Feb/21

thank you master brandon   God  keep you...

$${thank}\:{you}\:{master}\:{brandon} \\ $$$$\:{God}\:\:{keep}\:{you}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com