Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 131296 by EDWIN88 last updated on 03/Feb/21

 If asin^(−1) (x)−bcos^(−1) (x)= c   then the value of asin^(−1) (x)+bcos^(−1) (x)   (whenever exists) is equal to ?

$$\:{If}\:{a}\mathrm{sin}^{−\mathrm{1}} \left({x}\right)−{b}\mathrm{cos}^{−\mathrm{1}} \left({x}\right)=\:{c}\: \\ $$$${then}\:{the}\:{value}\:{of}\:{a}\mathrm{sin}^{−\mathrm{1}} \left({x}\right)+{b}\mathrm{cos}^{−\mathrm{1}} \left({x}\right)\: \\ $$$$\left({whenever}\:{exists}\right)\:{is}\:{equal}\:{to}\:? \\ $$

Answered by liberty last updated on 03/Feb/21

We have sin^(−1) (x)+cos^(−1) (x)=(π/2)  then bsin^(−1) (x)+bcos^(−1) (x)= ((bπ)/2)...(i)            asin^(−1) (x)−bcos^(−1) (x)= c ...(ii)   ∴ on adding (i) and (ii) we get    sin^(−1) (x)= ((((bπ)/2) + c)/(a+b)) and cos^(−1) (x)=((((aπ)/2)−c)/(a+b))  Therefore asin^(−1) (x)+bcos^(−1) (x)= ((πab+c(a−b))/(a+b))

$$\mathrm{We}\:\mathrm{have}\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}\right)+\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{x}\right)=\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{then}\:\mathrm{bsin}^{−\mathrm{1}} \left(\mathrm{x}\right)+\mathrm{bcos}^{−\mathrm{1}} \left(\mathrm{x}\right)=\:\frac{\mathrm{b}\pi}{\mathrm{2}}...\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{asin}^{−\mathrm{1}} \left(\mathrm{x}\right)−\mathrm{bcos}^{−\mathrm{1}} \left(\mathrm{x}\right)=\:\mathrm{c}\:...\left(\mathrm{ii}\right) \\ $$$$\:\therefore\:\mathrm{on}\:\mathrm{adding}\:\left(\mathrm{i}\right)\:\mathrm{and}\:\left(\mathrm{ii}\right)\:\mathrm{we}\:\mathrm{get}\: \\ $$$$\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}\right)=\:\frac{\frac{\mathrm{b}\pi}{\mathrm{2}}\:+\:\mathrm{c}}{\mathrm{a}+\mathrm{b}}\:\mathrm{and}\:\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{x}\right)=\frac{\frac{\mathrm{a}\pi}{\mathrm{2}}−\mathrm{c}}{\mathrm{a}+\mathrm{b}} \\ $$$$\mathrm{Therefore}\:\mathrm{asin}^{−\mathrm{1}} \left(\mathrm{x}\right)+\mathrm{bcos}^{−\mathrm{1}} \left(\mathrm{x}\right)=\:\frac{\pi\mathrm{ab}+\mathrm{c}\left(\mathrm{a}−\mathrm{b}\right)}{\mathrm{a}+\mathrm{b}} \\ $$

Commented by EDWIN88 last updated on 03/Feb/21

  sehr interessante Erklrung Sir

$$ \\ $$$$\mathrm{sehr}\:\mathrm{interessante}\:\mathrm{Erklrung}\:\mathrm{Sir}\: \\ $$

Answered by mr W last updated on 03/Feb/21

t=sin^(−1) x  (π/2)−t=cos^(−1) x  asin^(−1) (x)−bcos^(−1) (x)=c  ⇒at−b((π/2)−t)=c  ⇒(a+b)t=c+((bπ)/2)  ⇒t=(1/(a+b))(c+((bπ)/2))  asin^(−1) (x)+bcos^(−1) (x)   =at+b((π/2)−t)  =(a−b)t+((bπ)/2)  =((a−b)/(a+b))(c+((bπ)/2))+((bπ)/2)  =(((a−b)c+abπ)/(a+b))

$${t}=\mathrm{sin}^{−\mathrm{1}} {x} \\ $$$$\frac{\pi}{\mathrm{2}}−{t}=\mathrm{cos}^{−\mathrm{1}} {x} \\ $$$${a}\mathrm{sin}^{−\mathrm{1}} \left({x}\right)−{b}\mathrm{cos}^{−\mathrm{1}} \left({x}\right)={c} \\ $$$$\Rightarrow{at}−{b}\left(\frac{\pi}{\mathrm{2}}−{t}\right)={c} \\ $$$$\Rightarrow\left({a}+{b}\right){t}={c}+\frac{{b}\pi}{\mathrm{2}} \\ $$$$\Rightarrow{t}=\frac{\mathrm{1}}{{a}+{b}}\left({c}+\frac{{b}\pi}{\mathrm{2}}\right) \\ $$$${a}\mathrm{sin}^{−\mathrm{1}} \left({x}\right)+{b}\mathrm{cos}^{−\mathrm{1}} \left({x}\right)\: \\ $$$$={at}+{b}\left(\frac{\pi}{\mathrm{2}}−{t}\right) \\ $$$$=\left({a}−{b}\right){t}+\frac{{b}\pi}{\mathrm{2}} \\ $$$$=\frac{{a}−{b}}{{a}+{b}}\left({c}+\frac{{b}\pi}{\mathrm{2}}\right)+\frac{{b}\pi}{\mathrm{2}} \\ $$$$=\frac{\left({a}−{b}\right){c}+{ab}\pi}{{a}+{b}} \\ $$

Commented by EDWIN88 last updated on 03/Feb/21

nice

$${nice} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com