Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 131298 by liberty last updated on 03/Feb/21

Let cos^(−1) (x)+cos^(−1) (2x)+cos^(−1) (3x)=π  .If x satisfies the cubic ax^3 +bx^2 +cx−1=0  then a+b+c has the value equal to

Letcos1(x)+cos1(2x)+cos1(3x)=π.Ifxsatisfiesthecubicax3+bx2+cx1=0thena+b+chasthevalueequalto

Answered by mr W last updated on 03/Feb/21

cos (cos^(−1) x+cos^(−1) 2x)=cos (π−cos^(−1) 3x)  2x^2 −(√((1−x^2 )(1−4x^2 )))=−3x  (√((1−x^2 )(1−4x^2 )))=2x^2 +3x  (1−x^2 )(1−4x^2 )=4x^4 +12x^3 +9x^2   12x^3 +14x^2 −1=0≡ax^3 +bx^2 +cx−1=0  ⇒a=12, b=14, c=0  ⇒a+b+c=26

cos(cos1x+cos12x)=cos(πcos13x)2x2(1x2)(14x2)=3x(1x2)(14x2)=2x2+3x(1x2)(14x2)=4x4+12x3+9x212x3+14x21=0ax3+bx2+cx1=0a=12,b=14,c=0a+b+c=26

Terms of Service

Privacy Policy

Contact: info@tinkutara.com